Perucca P, Bahlo M, Berkovic SF. The genetics of epilepsy. Annu Rev Genom Hum Genet. 2020;21:205–30. https://doi.org/10.1146/annurev-genom-120219-074937.
Article
CAS
Google Scholar
Knowles JK, Helbig I, Metcalf CS, Lubbers LS, Isom LL, Demarest S, Goldberg EM, George AL Jr, Lerche H, Weckhuysen S, Whittemore V, Berkovic SF, Lowenstein DH. Precision medicine for genetic epilepsy on the horizon: recent advances, present challenges, and suggestions for continued progress. Epilepsia. 2022;63(10):2461–75. https://doi.org/10.1111/epi.17332.
Article
Google Scholar
McMahon JM, Scheffer IE, Nicholl JK, Waters W, Eyre H, Hinton L, Nelson P, Yu S, Dibbens LM, Berkovic SF, Mulley JC. Detection of microchromosomal aberrations in refractory epilepsy: a pilot study. Epileptic Disord. 2010;12(3):192–8. https://doi.org/10.1684/epd.2010.0326.
Article
Google Scholar
Hochstenbach R, Buizer-Voskamp JE, Vorstman JA, Ophoff RA. Genome arrays for the detection of copy number variations in idiopathic mental retardation, idiopathic generalized epilepsy and neuropsychiatric disorders: lessons for diagnostic workflow and research. Cytogenet Genome Res. 2011;135(3–4):174–202. https://doi.org/10.1159/000332928.
Article
CAS
Google Scholar
Mulley JC, Mefford HC. Epilepsy and the new cytogenetics. Epilepsia. 2011;52(3):423–32. https://doi.org/10.1111/j.1528-1167.2010.02932.x.
Article
Google Scholar
Galizia EC, Srikantha M, Palmer R, Waters JJ, Lench N, Ogilvie CM, Kasperavičiūtė D, Nashef L, Sisodiya SM. Array comparative genomic hybridization: results from an adult population with drug-resistant epilepsy and co-morbidities. Eur J Med Genet. 2012;55(5):342–8. https://doi.org/10.1016/j.ejmg.2011.12.011.
Article
Google Scholar
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Silvanovich AP, Yurov YB. Molecular karyotyping by array CGH in a Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies. Mol Cytogenet. 2012;5(1):46. https://doi.org/10.1186/1755-8166-5-46.
Article
Google Scholar
Lengyel A, Pinti É, Pikó H, Kristóf Á, Abonyi T, Némethi Z, Fekete G, Haltrich I. Clinical evaluation of rare copy number variations identified by chromosomal microarray in a Hungarian neurodevelopmental disorder patient cohort. Mol Cytogenet. 2022;15(1):47. https://doi.org/10.1186/s13039-022-00623-z.
Article
CAS
Google Scholar
Poot M, van der Smagt JJ, Brilstra EH, Bourgeron T. Disentangling the myriad genomics of complex disorders, specifically focusing on autism, epilepsy, and schizophrenia. Cytogenet Genome Res. 2011;135(3–4):228–40. https://doi.org/10.1159/000334064.
Article
CAS
Google Scholar
Niestroj LM, Perez-Palma E, Howrigan DP, Zhou Y, Cheng F, Saarentaus E, Nürnberg P, Stevelink R, Daly MJ, Palotie A, Lal D, Epi25 Collaborative. Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects. Brain. 2020;143(7):2106–18. https://doi.org/10.1093/brain/awaa171.
Article
Google Scholar
Balagué-Dobón L, Cáceres A, González JR. Fully exploiting SNP arrays: a systematic review on the tools to extract underlying genomic structure. Brief Bioinform. 2022;23(2):bbac043. https://doi.org/10.1093/bib/bbac043.
Article
Google Scholar
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Vasin KS, Demidova IA, Kolotii AD, Kravets VS, Iuditskaia ME, Iakushev NS, Soloviev IV, Yurov YB. Molecular cytogenetic and cytopostgenomic analysis of the human genome. Res Results Biomed. 2022;8(4):412–23. https://doi.org/10.18413/2658-6533-2022-8-4-0-1.
Article
Google Scholar
Gersen SL, Keagle MB, editors. The principles of clinical cytogenetics. Trenton: Humana Press Inc; 2005.
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB. Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol. 2006;249:143–91. https://doi.org/10.1016/S0074-7696(06)49003-3.
Article
CAS
Google Scholar
Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation, and neurological disease. Science. 2013;341(6141):1237758. https://doi.org/10.1126/science.1237758.
Article
CAS
Google Scholar
D’Gama AM, Walsh CA. Somatic mosaicism and neurodevelopmental disease. Nat Neurosci. 2018;21(11):1504–14. https://doi.org/10.1038/s41593-018-0257-3.
Article
CAS
Google Scholar
Ye Z, McQuillan L, Poduri A, Green TE, Matsumoto N, Mefford HC, Scheffer IE, Berkovic SF, Hildebrand MS. Somatic mutation: the hidden genetics of brain malformations and focal epilepsies. Epilepsy Res. 2019;155:106161. https://doi.org/10.1016/j.eplepsyres.2019.106161.
Article
CAS
Google Scholar
Jourdon A, Fasching L, Scuderi S, Abyzov A, Vaccarino FM. The role of somatic mosaicism in brain disease. Curr Opin Genet Dev. 2020;65:84–90. https://doi.org/10.1016/j.gde.2020.05.002.
Article
CAS
Google Scholar
Niestroj LM, May P, Artomov M, Kobow K, Coras R, Pérez-Palma E, Altmüller J, Thiele H, Nürnberg P, Leu C, Palotie A, Daly MJ, Klein KM, Beschorner R, Weber YG, Blümcke I, Lal D. Assessment of genetic variant burden in epilepsy-associated brain lesions. Eur J Hum Genet. 2019;27(11):1738–44. https://doi.org/10.1038/s41431-019-0484-4.
Article
CAS
Google Scholar
Bedrosian TA, Miller KE, Grischow OE, Schieffer KM, LaHaye S, Yoon H, Miller AR, Navarro J, Westfall J, Leraas K, Choi S, Williamson R, Fitch J, Kelly BJ, White P, Lee K, McGrath S, Cottrell CE, Magrini V, Leonard J, Pindrik J, Shaikhouni A, Boué DR, Thomas DL, Pierson CR, Wilson RK, Ostendorf AP, Mardis ER, Koboldt DC. Detection of brain somatic variation in epilepsy-associated developmental lesions. Epilepsia. 2022;63(8):1981–97. https://doi.org/10.1111/epi.17323.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Kurinnaia OS, Kutsev SI, Yurov YB. Somatic mosaicism in the diseased brain. Mol Cytogenet. 2022;15(1):45. https://doi.org/10.1186/s13039-022-00624-y.
Article
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB. Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics. 2012;13(6):477–88. https://doi.org/10.2174/138920212802510439.
Article
CAS
Google Scholar
Costantino I, Nicodemus J, Chun J. Genomic mosaicism formed by somatic variation in the aging and diseased brain. Genes (Basel). 2021;12(7):1071. https://doi.org/10.3390/genes12071071.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Vasin KS, Yurov YB. Causes and consequences of genome instability in psychiatric and neurodegenerative diseases. Mol Biol (Mosk). 2021;55(1):42–53. https://doi.org/10.31857/S0026898421010158.
Article
CAS
Google Scholar
Iourov IY, Yurov YB, Vorsanova SG, Kutsev SI. Chromosome instability, aging and brain diseases. Cells. 2021;10(5):1256. https://doi.org/10.3390/cells10051256.
Article
CAS
Google Scholar
Maury EA, Walsh CA. Somatic copy number variants in neuropsychiatric disorders. Curr Opin Genet Dev. 2021;68:9–17. https://doi.org/10.1016/j.gde.2020.12.013.
Article
CAS
Google Scholar
Yurov YB, Vorsanova SG, Iourov IY. GIN’n’CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Mol Cytogenet. 2009;2:23. https://doi.org/10.1186/1755-8166-2-23.
Article
CAS
Google Scholar
Yurov YB, Vorsanova SG, Iourov IY. Ontogenetic variation of the human genome. Curr Genomics. 2010;11(6):420–5. https://doi.org/10.2174/138920210793175958.
Article
CAS
Google Scholar
Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev. 2017;161(PtA):19–36. https://doi.org/10.1016/j.mad.2016.03.007.
Article
CAS
Google Scholar
EpiPM Consortium. A roadmap for precision medicine in the epilepsies. Lancet Neurol. 2015;14(12):1219–28. https://doi.org/10.1016/S1474-4422(15)00199-4.
Article
Google Scholar
Liehr T. Cytogenetics and molecular cytogenetics. Boca Raton: CRC Press; 2022. https://doi.org/10.1201/9781003223658.
Book
Google Scholar
Bahi-Buisson N, Guttierrez-Delicado E, Soufflet C, Rio M, Daire VC, Lacombe D, Héron D, Verloes A, Zuberi S, Burglen L, Afenjar A, Moutard ML, Edery P, Novelli A, Bernardini L, Dulac O, Nabbout R, Plouin P, Battaglia A. Spectrum of epilepsy in terminal 1p36 deletion syndrome. Epilepsia. 2008;49(3):509–15. https://doi.org/10.1111/j.1528-1167.2007.01424.x.
Article
Google Scholar
Greco M, Ferrara P, Farello G, Striano P, Verrotti A. Electroclinical features of epilepsy associated with 1p36 deletion syndrome: a review. Epilepsy Res. 2018;139:92–101. https://doi.org/10.1016/j.eplepsyres.2017.11.016.
Article
CAS
Google Scholar
Chih-Ping C, Schu-Rern C, Peih-Shan W, Shin-Wen C, Fang-Tzu W, Wayseen W. Molecular cytogenetic characterization of a de novo chromosome 1q41-q42.11 microdeletion of paternal origin in a 15-year-old boy with mental retardation, developmental delay, autism and congenital heart defects. Taiwan J Obstet Gynecol. 2021;60(2):341–4. https://doi.org/10.1016/j.tjog.2021.01.013.
Article
Google Scholar
Pavone P, Falsaperla R, Rizzo R, Praticò AD, Ruggieri M. Chromosome 2p15-p16.1 microduplication in a boy with congenital anomalies: is it a distinctive syndrome? Eur J Med Genet. 2019;62(1):47–54. https://doi.org/10.1016/j.ejmg.2018.05.001.
Article
Google Scholar
Coyan AG, Dyer LM. 3q29 microduplication syndrome: clinical and molecular description of eleven new cases. Eur J Med Genet. 2020;63(12):104083. https://doi.org/10.1016/j.ejmg.2020.104083.
Article
Google Scholar
Pollak RM, Zinsmeister MC, Murphy MM, Zwick ME, Emory 3q29 Project, Mulle JG. New phenotypes associated with 3q29 duplication syndrome: results from the 3q29 registry. Am J Med Genet A. 2020;182(5):1152–66. https://doi.org/10.1002/ajmg.a.61540.
Article
CAS
Google Scholar
Kuriko K, Katsumi I, Kazumasa O, Noriko K, Takeshi O, Yasuhisa T, Yasuhiro S, Keiichi O. Epilepsy in Wolf-Hirschhorn Syndrome (4p-). Epilepsia. 2005;46(1):150–5. https://doi.org/10.1111/j.0013-9580.2005.02804.x.
Article
Google Scholar
Fernández Hernández L, Alcántara Ortigoza MA, Ramos Angeles SE, González-Del AA. Cleft lip palate in a patient with 5q14.3 deletion syndrome: a possible unreported feature? Cytogenet Genome Res. 2021;161(12):556–63. https://doi.org/10.1159/000521225.
Article
CAS
Google Scholar
Hanna MD, Moretti PN, de Oliveira CP, Rosa MT, Versiani BR, de Oliveira SF, Pic-Taylor A, Mazzeu JF. Defining the critical region for intellectual disability and brain malformations in 6q27 microdeletions. Mol Syndromol. 2019;10(4):202–8. https://doi.org/10.1159/000501008.
Article
CAS
Google Scholar
Francesco N, Giacomo G, Alberto S, Salvatore S, Pasquale S, Chiara P, Maria VS, Gerhard K, Giuseppe C, Dario P, Elena F, Stefano D’A, Alberto V. Epilepsy is a possible feature in Williams-Beuren syndrome patients harboring typical deletions of the 7q11.23 critical region. Am J Med Genet A. 2016;170(1):148–55. https://doi.org/10.1002/ajmg.a.37410.
Article
CAS
Google Scholar
Rezazadeh A, Borlot F, Faghfoury H, Andrade DM. Genetic generalized epilepsy in three siblings with 8q21.13-q22.2 duplication. Seizure. 2017;48:57–61. https://doi.org/10.1016/j.seizure.2017.04.004.
Article
Google Scholar
Bonaglia MC, Giorda R, Tenconi R, Pessina M, Pramparo T, Borgatti R, Zuffardi O. A 2.3 Mb duplication of chromosome 8q24.3 associated with severe mental retardation and epilepsy detected by standard karyotype. Eur J Hum Genet. 2005;13(5):586–91. https://doi.org/10.1038/sj.ejhg.5201369.
Article
CAS
Google Scholar
Nicita F, Ulgiati F, Bernardini L, Garone G, Papetti L, Novelli A, Spalice A. Early myoclonic encephalopathy in 9q33-q34 deletion encompassing STXBP1 and SPTAN1. Ann Hum Genet. 2015;79(3):209–17. https://doi.org/10.1111/ahg.12106.
Article
CAS
Google Scholar
Matsumoto H, Zaha K, Nakamura Y, Hayashi S, Inazawa J, Nonoyama S. Chromosome 9q33q34 microdeletion with early infantile epileptic encephalopathy, severe dystonia, abnormal eye movements, and nephroureteral malformations. Pediatr Neurol. 2014;51(1):170–5. https://doi.org/10.1016/j.pediatrneurol.2014.03.013.
Article
Google Scholar
Shimojima K, Okamoto N, Goel H, Ondo Y, Yamamoto T. Familial 9q33q34 microduplication in siblings with developmental disorders and macrocephaly. Eur J Med Genet. 2017;60(12):650–4. https://doi.org/10.1016/j.ejmg.2017.08.017.
Article
Google Scholar
Campbell IM, Yatsenko SA, Hixson P, Reimschisel T, Thomas M, Wilson W, Dayal U, Wheless JW, Crunk A, Curry C, Parkinson N, Fishman L, Riviello JJ, Nowaczyk MJ, Zeesman S, Rosenfeld JA, Bejjani BA, Shaffer LG, Cheung SW, Lupski JR, Stankiewicz P, Scaglia F. Novel 9q34.11 gene deletions encompassing combinations of four Mendelian disease genes: STXBP1, SPTAN1, ENG, and TOR1A. Genet Med. 2012;14(10):868–76. https://doi.org/10.1038/gim.2012.65.
Article
CAS
Google Scholar
Vari MS, Traverso M, Bellini T, Madia F, Pinto F, Minetti C, Striano P, Zara F. De novo 12q22.q23.3 duplication associated with temporal lobe epilepsy. Seizure. 2017;50:80–2. https://doi.org/10.1016/j.seizure.2017.06.011.
Article
Google Scholar
Brunetti-Pierri N, Paciorkowski AR, Ciccone R, Della Mina E, Bonaglia MC, Borgatti R, Schaaf CP, Sutton VR, Xia Z, Jelluma N, Ruivenkamp C, Bertrand M, de Ravel TJ, Jayakar P, Belli S, Rocchetti K, Pantaleoni C, D’Arrigo S, Hughes J, Cheung SW, Zuffardi O, Stankiewicz P. Duplications of FOXG1 in 14q12 are associated with developmental epilepsy, mental retardation, and severe speech impairment. Eur J Hum Genet. 2011;19(1):102–7.
Article
CAS
Google Scholar
Vaisfeld A, Spartano S, Gobbi G, Vezzani A, Neri G. Chromosome 14 deletions, rings, and epilepsy genes: a riddle wrapped in a mystery inside an enigma. Epilepsia. 2021;62(1):25–40. https://doi.org/10.1111/epi.16754.
Article
CAS
Google Scholar
Giovannini S, Marangio L, Fusco C, Scarano A, Frattini D, Della Giustina E, Zollino M, Neri G, Gobbi G. Epilepsy in ring 14 syndrome: a clinical and EEG study of 22 patients. Epilepsia. 2013;54(12):2204–13. https://doi.org/10.1111/epi.12393.
Article
Google Scholar
Vendrame M, Maski KP, Chatterjee M, Heshmati A, Krishnamoorthy K, Tan WH, Kothare SV. Epilepsy in Prader-Willi syndrome: clinical characteristics and correlation to genotype. Epilepsy Behav. 2010;19(3):306–10. https://doi.org/10.1016/j.yebeh.2010.07.007.
Article
Google Scholar
Samanta D. Epilepsy in Angelman syndrome: a scoping review. Brain Dev. 2021;43(1):32–44. https://doi.org/10.1016/j.braindev.2020.08.014.
Article
CAS
Google Scholar
Damiano JA, Mullen SA, Hildebrand MS, Bellows ST, Lawrence KM, Arsov T, Dibbens L, Major H, Dahl HH, Mefford HC, Darbro BW, Scheffer IE, Berkovic SF. Evaluation of multiple putative risk alleles within the 15q13.3 region for genetic generalized epilepsy. Epilepsy Res. 2015;117:70–3. https://doi.org/10.1016/j.eplepsyres.2015.09.007.
Article
CAS
Google Scholar
Whitney R, Nair A, McCready E, Keller AE, Adil IS, Aziz AS, Borys O, Siu K, Shah C, Meaney BF, Jones K, Ramachandran NR. The spectrum of epilepsy in children with 15q13.3 microdeletion syndrome. Seizure. 2021;92:221–9. https://doi.org/10.1016/j.seizure.2021.09.016.
Article
Google Scholar
Chen CP, Lin SP, Tsai FJ, Chern SR, Lee CC, Wang W. A 5.6-Mb deletion in 15q14 in a boy with speech and language disorder, cleft palate, epilepsy, a ventricular septal defect, mental retardation and developmental delay. Eur J Med Genet. 2008;51(4):368–72. https://doi.org/10.1016/j.ejmg.2008.02.011.
Article
Google Scholar
Huynh MT, Lambert AS, Tosca L, Petit F, Philippe C, Parisot F, Benoît V, Linglart A, Brisset S, Tran CT, Tachdjian G, Receveur A. 15q24.1 BP4-BP1 microdeletion unmasking paternally inherited functional polymorphisms combined with distal 15q24.2q24.3 duplication in a patient with epilepsy, psychomotor delay, overweight, ventricular arrhythmia. Eur J Med Genet. 2018;61(8):459–64. https://doi.org/10.1016/j.ejmg.2018.03.005.
Article
Google Scholar
Liu JY, Kasperavičiūtė D, Martinian L, Thom M, Sisodiya SM. Neuropathology of 16p13.11 deletion in epilepsy. PLoS ONE. 2012;7(4):e34813. https://doi.org/10.1371/journal.pone.0034813.
Article
CAS
Google Scholar
Falsaperla R, Marino SD, Marino S, Pavone P. Electroclinical pattern and epilepsy evolution in an infant with Miller-Dieker Syndrome. J Pediatr Neurosci. 2018;13(3):302–7. https://doi.org/10.4103/jpn.jpn_182_17.
Article
Google Scholar
Hardies K, Weckhuysen S, Peeters E, Holmgren P, Van Esch H, De Jonghe P, Van Paesschen W, Suls A. Duplications of 17q12 can cause familial fever-related epilepsy syndromes. Neurology. 2013;81(16):1434–40. https://doi.org/10.1212/wnl.0b013e3182a84163.
Article
CAS
Google Scholar
Cerminara C, Lo Castro A, D’Argenzio L, Galasso C, Curatolo P. Epilepsy and deletion syndromes of chromosome 18: do not forget the short arm! Epilepsia. 2008;49(10):1813–4. https://doi.org/10.1111/j.1528-1167.2008.01662.x.
Article
Google Scholar
Auvin S, Holder-Espinasse M, Lamblin MD, Andrieux J. Array-CGH detection of a de novo 0.7-Mb deletion in 19p13.13 including CACNA1A associated with mental retardation and epilepsy with infantile spasms. Epilepsia. 2009;50(11):2501–3. https://doi.org/10.1111/j.1528-1167.2009.02189.x.
Article
Google Scholar
Vignoli A, Bisulli F, Darra F, Mastrangelo M, Barba C, Giordano L, Turner K, Zambrelli E, Chiesa V, Bova S, Fiocchi I, Peron A, Naldi I, Milito G, Licchetta L, Tinuper P, Guerrini R, Dalla Bernardina B, Canevini MP. Epilepsy in ring chromosome 20 syndrome. Epilepsy Res. 2016;128:83–93. https://doi.org/10.1016/j.eplepsyres.2016.10.004.
Article
CAS
Google Scholar
Bayat M, Bayat A. Neurological manifestation of 22q11.2 deletion syndrome. Neurol Sci. 2022;43(3):1695–700. https://doi.org/10.1007/s10072-021-05825-8.
Article
Google Scholar
Ishikawa N, Kobayashi Y, Fujii Y, Yamamoto T, Kobayashi M. Late-onset epileptic spasms in a patient with 22q13.3 deletion syndrome. Brain Dev. 2016;38(1):109–12. https://doi.org/10.1016/j.braindev.2015.06.002.
Article
Google Scholar
Magini P, Scarano E, Donati I, Sensi A, Mazzanti L, Perri A, Tamburrino F, Mongelli P, Percesepe A, Visconti P, Parmeggiani A, Seri M, Graziano C. Challenges in the clinical interpretation of small de novo copy number variants in neurodevelopmental disorders. Gene. 2019;20(706):162–71. https://doi.org/10.1016/j.gene.2019.05.007.
Article
CAS
Google Scholar
Cope H, Barseghyan H, Bhattacharya S, Fu Y, Hoppman N, Marcou C, Walley N, Rehder C, Deak K, Alkelai A, Undiagnosed Diseases Network, Vilain E, Shashi V. Detection of a mosaic CDKL5 deletion and inversion by optical genome mapping ends an exhaustive diagnostic odyssey. Mol Genet Genom Med. 2021;9(7):e1665. https://doi.org/10.1002/mgg3.1665.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Voinova VY, Kurinnaia OS, Zelenova MA, Demidova IA, Yurov YB. Xq28 (MECP2) microdeletions are common in mutation-negative females with Rett syndrome and cause mild subtypes of the disease. Mol Cytogenet. 2013;6(1):53. https://doi.org/10.1186/1755-8166-6-53.
Article
CAS
Google Scholar
Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY. Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics. 2010;11(6):440–6. https://doi.org/10.2174/138920210793176010.
Article
CAS
Google Scholar
Campbell IM, Shaw CA, Stankiewicz P, Lupski JR. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 2015;31(7):382–92. https://doi.org/10.1016/j.tig.2015.03.013.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB, Kutsev SI. Ontogenetic and pathogenetic views on somatic chromosomal mosaicism. Genes (Basel). 2019;10(5):379. https://doi.org/10.3390/genes10050379.
Article
CAS
Google Scholar
Coppola A, Cellini E, Stamberger H, Saarentaus E, Cetica V, Lal D, Djémié T, Bartnik-Glaska M, Ceulemans B, Helen Cross J, Deconinck T, Masi S, Dorn T, Guerrini R, Hoffman-Zacharska D, Kooy F, Lagae L, Lench N, Lemke JR, Lucenteforte E, Madia F, Mefford HC, Morrogh D, Nuernberg P, Palotie A, Schoonjans AS, Striano P, Szczepanik E, Tostevin A, Vermeesch JR, Van Esch H, Van Paesschen W, Waters JJ, Weckhuysen S, Zara F, De Jonghe P, Sisodiya SM, Marini C, EuroEPINOMICS-RES Consortium, EpiCNV Consortium. Diagnostic implications of genetic copy number variation in epilepsy plus. Epilepsia. 2019;60(4):689–706. https://doi.org/10.1111/epi.14683.
Article
CAS
Google Scholar
Collins RL, Glessner JT, Porcu E, Lepamets M, Brandon R, Lauricella C, Han L, Morley T, Niestroj LM, Ulirsch J, Everett S, Howrigan DP, Boone PM, Fu J, Karczewski KJ, Kellaris G, Lowther C, Lucente D, Mohajeri K, Nõukas M, Nuttle X, Samocha KE, Trinh M, Ullah F, Võsa U, Epi25 Consortium, Estonian Biobank Research Team, Hurles ME, Aradhya S, Davis EE, Finucane H, Gusella JF, Janze A, Katsanis N, Matyakhina L, Neale BM, Sanders D, Warren S, Hodge JC, Lal D, Ruderfer DM, Meck J, Mägi R, Esko T, Reymond A, Kutalik Z, Hakonarson H, Sunyaev S, Brand H, Talkowski ME. A cross-disorder dosage sensitivity map of the human genome. Cell. 2022;185(16):3041–55. https://doi.org/10.1016/j.cell.2022.06.036.
Article
CAS
Google Scholar
Walker LE, Mirza N, Yip VLM, Marson AG, Pirmohamed M. Personalized medicine approaches in epilepsy. J Intern Med. 2015;277(2):218–34. https://doi.org/10.1111/joim.12322.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB. The variome concept: focus on CNVariome. Mol Cytogenet. 2019;12:52. https://doi.org/10.1186/s13039-019-0467-8.
Article
Google Scholar
Wang TS, Tsai WH, Tsai LP, Wong SB. Clinical characteristics and epilepsy in genomic imprinting disorders: Angelman syndrome and Prader-Willi syndrome. Ci Ji Yi Xue Za Zhi. 2019;32(2):137–44. https://doi.org/10.4103/tcmj.tcmj_103_19.
Article
Google Scholar
Iourov IY, Vorsanova SG, Korostelev SA, Zelenova MA, Yurov YB. Long contiguous stretches of homozygosity spanning shortly the imprinted loci are associated with intellectual disability, autism and/or epilepsy. Mol Cytogenet. 2015;8:77. https://doi.org/10.1186/s13039-015-0182-z.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Zelenova MA, Vasin KS, Kurinnaia OS, Korostelev SA, Yurov YB. Epigenomic variations manifesting as a loss of heterozygosity affecting imprinted genes represent a molecular mechanism of autism spectrum disorders and intellectual disability in children. Zh Nevrol Psikhiatr Im S S Korsakova. 2019;119(5):91–7. https://doi.org/10.17116/jnevro201911905191.
Article
CAS
Google Scholar
Hu Q, Chai H, Shu W, Li P. Human ring chromosome registry for cases in the Chinese population: re-emphasizing cytogenomic and clinical heterogeneity and reviewing diagnostic and treatment strategies. Mol Cytogenet. 2018;11:19. https://doi.org/10.1186/s13039-018-0367-3.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB, Zelenova MA, Kurinnaia OS, Vasin KS, Kutsev SI. The cytogenomic “theory of everything”: chromohelkosis may underlie chromosomal instability and mosaicism in disease and aging. Int J Mol Sci. 2020;21(21):8328. https://doi.org/10.3390/ijms21218328.
Article
CAS
Google Scholar
Liehr T. Small supernumerary marker chromosomes: a guide for human geneticist and clinicians. Berlin: Springer Verlag; 2012. https://doi.org/10.1007/978-3-642-20766-2.
Book
Google Scholar
Liehr T, Al-Rikabi A. Mosaicism: reason for normal phenotypes in carriers of small supernumerary marker chromosomes with known adverse outcome. A systematic review. Front Genet. 2019;10:1131. https://doi.org/10.3389/fgene.2019.01131.
Article
Google Scholar
Battaglia A, Gurrieri F, Bertini E, Bellacosa A, Pomponi MG, Paravatou-Petsotas M, Mazza S, Neri G. The inv dup(15) syndrome: a clinically recognizable syndrome with altered behavior, mental retardation, and epilepsy. Neurology. 1997;48(4):1081–6. https://doi.org/10.1212/wnl.48.4.1081.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB. In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet. 2014;7(1):98. https://doi.org/10.1186/s13039-014-0098-z.
Article
Google Scholar
Yurov YB, Vorsanova SG, Iourov IY. Network-based classification of molecular cytogenetic data. Curr Bioinform. 2017;12:27–33. https://doi.org/10.2174/1574893611666160606165119.
Article
CAS
Google Scholar
Vorsanova SG, Yurov YB, Iourov IY. Neurogenomic pathway of autism spectrum disorders: linking germline and somatic mutations to genetic-environmental interactions. Curr Bioinform. 2017;12:19–26. https://doi.org/10.2174/1574893611666160606164849.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB. Systems cytogenomics: are we ready yet? Curr Genomics. 2021;22(2):75–8. https://doi.org/10.2174/1389202922666210219112419.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Voinova VY, Yurov YB. 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances. Mol Cytogenet. 2015;8:82. https://doi.org/10.1186/s13039-015-0185-9.
Article
CAS
Google Scholar
Wang J, Lin ZJ, Liu L, Xu HQ, Shi YW, Yi YH, He N, Liao WP. Epilepsy-associated genes. Seizure. 2017;44:11–20. https://doi.org/10.1016/j.seizure.2016.11.030.
Article
CAS
Google Scholar
Noebels J. Pathway-driven discovery of epilepsy genes. Nat Neurosci. 2015;18(3):344–50. https://doi.org/10.1038/nn.3933.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB. Pathway-based classification of genetic diseases. Mol Cytogenet. 2019;12:4. https://doi.org/10.1186/s13039-019-0418-4.
Article
Google Scholar
Browne F, Wang H, Zheng H. A computational framework for the prioritization of disease-gene candidates. BMC Genom. 2015;16(Suppl 9):S2. https://doi.org/10.1186/1471-2164-16-S9-S2.
Article
CAS
Google Scholar
Iourov IY. Cytopostgenomics: what is it and how does it work? Curr Genomics. 2019;20(2):77–8. https://doi.org/10.2174/138920292002190422120524.
Article
CAS
Google Scholar
Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshé SL, Nordli DR, Perucca E, Tomson T, Wiebe S, Zhang YH, Zuberi SM. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):512–21. https://doi.org/10.1111/epi.13709.
Article
Google Scholar
Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, Lerche H, Lowenstein D, Møller RS, Poduri A, Sadleir L, Sisodiya SM, Weckhuysen S, Wilmshurst JM, Weber Y, Lemke JR, Berkovic SF, Cross JH, Helbig I, Lerche H, Lowenstein D, Mefford HC, Perucca P, Tan NC, Caglayan H, Helbig K, Singh G, Weber Y, Weckhuysen S. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord. 2022;24(5):765–86. https://doi.org/10.1684/epd.2022.
Article
Google Scholar
Mullen SA, Berkovic SF. ILAE Genetics Commission. Genetic generalized epilepsies. Epilepsia. 2018;59(6):1148–53. https://doi.org/10.1111/epi.14042.
Article
Google Scholar
Vorsanova SG, Yurov IY, Demidova IA, Voinova-Ulas VY, Kravets VS, Solov’ev IV, Gorbachevskaya NL, Yurov YB. Variability in the heterochromatin regions of the chromosomes and chromosomal anomalies in children with autism: identification of genetic markers of autistic spectrum disorders. Neurosci Behav Physiol. 2007;37(6):553–8. https://doi.org/10.1007/s11055-007-0052-1.
Article
CAS
Google Scholar
Vorsanova SG, Voinova VY, Yurov IY, Kurinnaya OS, Demidova IA, Yurov YB. Cytogenetic, molecular-cytogenetic, and clinical-genealogical studies of the mothers of children with autism: a search for familial genetic markers for autistic disorders. Neurosci Behav Physiol. 2010;40(7):745–56. https://doi.org/10.1007/s11055-010-9321-5.
Article
CAS
Google Scholar
Demidova IA, Vorsanova SG, Kurinnaia OS, Vasin KS, Voinova VY, Zelenova MA, Kolotii AD, Kravets VS, Bulatnikova MA, Yablonskaya MI, Sharonin VO, Yurov YB, Iourov IY. Molecular karyotyping of chromosomal anomalies and copy number variations (CNVs) in idiopathic forms of intellectual disability and epilepsy. Res Results Biomed. 2020;6(2):172–97. https://doi.org/10.18413/2658-6533-2020-6-2-0-3.
Article
Google Scholar
Morrison RS, Kinoshita Y. The role of p53 in neuronal cell death. Cell Death Differ. 2000;7(10):868–79. https://doi.org/10.1038/sj.cdd.4400741.
Article
CAS
Google Scholar
Garcia-Junco-Clemente P, Golshani P. PTEN: a master regulator of neuronal structure, function, and plasticity. Commun Integr Biol. 2014;7(1):e28358. https://doi.org/10.4161/cib.28358.
Article
CAS
Google Scholar
Pernice HF, Schieweck R, Kiebler MA, Popper B. mTOR and MAPK: from localized translation control to epilepsy. BMC Neurosci. 2016;17(1):73. https://doi.org/10.1186/s12868-016-0308-1.
Article
CAS
Google Scholar
Dobyns WB, Mirzaa GM. Megalencephaly syndromes associated with mutations of core components of the PI3K-AKT-MTOR pathway: PIK3CA, PIK3R2, AKT3, and MTOR. Am J Med Genet C Semin Med Genet. 2019;181(4):582–90. https://doi.org/10.1002/ajmg.c.31736.
Article
CAS
Google Scholar
Lee WS, Baldassari S, Stephenson SEM, Lockhart PJ, Baulac S, Leventer RJ. Cortical Dysplasia and the mTOR pathway: how the study of human brain tissue has led to insights into epileptogenesis. Int J Mol Sci. 2022;23(3):1344. https://doi.org/10.3390/ijms23031344.
Article
CAS
Google Scholar
Sim NS, Ko A, Kim WK, Kim SH, Kim JS, Shim KW, Aronica E, Mijnsbergen C, Spliet WGM, Koh HY, Kim HD, Lee JS, Kim DS, Kang HC, Lee JH. Precise detection of low-level somatic mutation in resected epilepsy brain tissue. Acta Neuropathol. 2019;138(6):901–12. https://doi.org/10.1007/s00401-019-02052-6.
Article
CAS
Google Scholar
López-Rivera JA, Leu C, Macnee M, Khoury J, Hoffmann L, Coras R, Kobow K, Bhattarai N, Pérez-Palma E, Hamer H, Brandner S, Rössler K, Bien CG, Kalbhenn T, Pieper T, Hartlieb T, Butler E, Genovese G, Becker K, Altmüller J, Niestroj LM, Ferguson L, Busch RM, Nürnberg P, Najm I, Blümcke I, Lal D. The genomic landscape across 474 surgically accessible epileptogenic human brain lesions. Brain. 2022. https://doi.org/10.1093/brain/awac376.
Article
Google Scholar
Park SM, Lim JS, Ramakrishina S, Kim SH, Kim WK, Lee J, Kang HC, Reiter JF, Kim DS, Kim HH, Lee JH. Brain somatic mutations in MTOR disrupt neuronal ciliogenesis, leading to focal cortical dyslamination. Neuron. 2018;99(1):83-97.e7. https://doi.org/10.1016/j.neuron.2018.05.039.
Article
CAS
Google Scholar
D’Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE, LaCoursiere CM, Najm I, Ying Z, Yang E, Barkovich AJ, Kwiatkowski DJ, Vinters HV, Madsen JR, Mathern GW, Blümcke I, Poduri A, Walsh CA. Somatic mutations activating the MTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep. 2017;21(13):3754–66. https://doi.org/10.1016/j.celrep.2017.11.106.
Article
CAS
Google Scholar
Lim JS, Gopalappa R, Kim SH, Ramakrishna S, Lee M, Kim WI, Kim J, Park SM, Lee J, Oh JH, Kim HD, Park CH, Lee JS, Kim S, Kim DS, Han JM, Kang HC, Kim HH, Lee JH. Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia. Am J Hum Genet. 2017;100(3):454–72. https://doi.org/10.1016/j.ajhg.2017.01.030.
Article
CAS
Google Scholar
Ribierre T, Deleuze C, Bacq A, Baldassari S, Marsan E, Chipaux M, Muraca G, Roussel D, Navarro V, Leguern E, Miles R, Baulac S. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J Clin Investig. 2018;128(6):2452–8. https://doi.org/10.1172/JCI99384.
Article
Google Scholar
Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012;44(8):941–5. https://doi.org/10.1038/ng.2329.
Article
CAS
Google Scholar
Pelorosso C, Watrin F, Conti V, Buhler E, Gelot A, Yang X, Mei D, McEvoy-Venneri J, Manent JB, Cetica V, Ball LL, Buccoliero AM, Vinck A, Barba C, Gleeson JG, Guerrini R, Represa A. Somatic double-hit in MTOR and RPS6 in hemimegalencephaly with intractable epilepsy. Hum Mol Genet. 2019;28(22):3755–65. https://doi.org/10.1093/hmg/ddz194.
Article
CAS
Google Scholar
Hildebrand MS, Griffin NG, Damiano JA, Cops EJ, Burgess R, Ozturk E, Jones NC, Leventer RJ, Freeman JL, Harvey AS, Sadleir LG, Scheffer IE, Major H, Darbro BW, Allen AS, Goldstein DB, Kerrigan JF, Berkovic SF, Heinzen EL. Mutations of the sonic hedgehog pathway underlie hypothalamic hamartoma with gelastic epilepsy. Am J Hum Genet. 2016;99(2):423–9. https://doi.org/10.1016/j.ajhg.2016.05.031.
Article
CAS
Google Scholar
Saitsu H, Sonoda M, Higashijima T, Shirozu H, Masuda H, Tohyama J, Kato M, Nakashima M, Tsurusaki Y, Mizuguchi T, Miyatake S, Miyake N, Kameyama S, Matsumoto N. Somatic mutations in GLI3 and OFD1 involved in sonic hedgehog signaling cause hypothalamic hamartoma. Ann Clin Transl Neurol. 2016;3(5):356–65. https://doi.org/10.1002/acn3.300.
Article
CAS
Google Scholar
Winawer MR, Griffin NG, Samanamud J, Baugh EH, Rathakrishnan D, Ramalingam S, Zagzag D, Schevon CA, Dugan P, Hegde M, Sheth SA, McKhann GM, Doyle WK, Grant GA, Porter BE, Mikati MA, Muh CR, Malone CD, Bergin AMR, Peters JM, McBrian DK, Pack AM, Akman CI, LaCoursiere CM, Keever KM, Madsen JR, Yang E, Lidov HGW, Shain C, Allen AS, Canoll PD, Crino PB, Poduri AH, Heinzen EL. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol. 2018;83(6):1133–46. https://doi.org/10.1002/ana.25243.
Article
CAS
Google Scholar
Hildebrand MS, Harvey AS, Malone S, Damiano JA, Do H, Ye Z, McQuillan L, Maixner W, Kalnins R, Nolan B, Wood M, Ozturk E, Jones NC, Gillies G, Pope K, Lockhart PJ, Dobrovic A, Leventer RJ, Scheffer IE, Berkovic SF. Somatic GNAQ mutation in the forme fruste of Sturge-Weber syndrome. Neurol Genet. 2018;4(3):e236. https://doi.org/10.1212/NXG.0000000000000236.
Article
CAS
Google Scholar
Qin W, Chan JA, Vinters HV, Mathern GW, Franz DN, Taillon BE, Bouffard P, Kwiatkowski DJ. Analysis of TSC cortical tubers by deep sequencing of TSC1, TSC2 and KRAS demonstrates that small second-hit mutations in these genes are rare events. Brain Pathol. 2010;20(6):1096–105. https://doi.org/10.1111/j.1750-3639.2010.00416.x.
Article
CAS
Google Scholar
Yurov YB, Vorsanova SG, Iourov IY, Demidova IA, Beresheva AK, Kravetz VS, Monakhov VV, Kolotii AD, Voinova-Ulas VY, Gorbachevskaya NL. Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet. 2007;44(8):521–5.
Article
CAS
Google Scholar
Vorsanova SG, Kolotii AD, Kurinnaia OS, Kravets VS, Demidova IA, Soloviev IV, Yurov YB, Iourov IY. Turner’s syndrome mosaicism in girls with neurodevelopmental disorders: a cohort study and hypothesis. Mol Cytogenet. 2021;14(1):9. https://doi.org/10.1186/s13039-021-00529-2.
Article
CAS
Google Scholar
Vorsanova SG, Demidova IA, Kolotii AD, Kurinnaia OS, Kravets VS, Soloviev IV, Yurov YB, Iourov IY. Klinefelter syndrome mosaicism in boys with neurodevelopmental disorders: a cohort study and an extension of the hypothesis. Mol Cytogenet. 2022;15(1):8. https://doi.org/10.1186/s13039-022-00588-z.
Article
CAS
Google Scholar
Liu G, Ye CJ, Chowdhury SK, Abdallah BY, Horne SD, Nichols D, Heng HH. Detecting chromosome condensation defects in gulf war illness patients. Curr Genomics. 2018;19(3):200–6. https://doi.org/10.2174/1389202918666170705150819.
Article
CAS
Google Scholar
Vorsanova SG, Zelenova MA, Yurov YB, Iourov IY. Behavioral variability and somatic mosaicism: a cytogenomic hypothesis. Curr Genomics. 2018;19(3):158–62. https://doi.org/10.2174/1389202918666170719165339.
Article
CAS
Google Scholar
Charney E. The, “Golden Age” of behavior genetics? Perspect Psychol Sci. 2022;17(4):1188–210. https://doi.org/10.1177/17456916211041602.
Article
Google Scholar
Arendt T, Mosch B, Morawski M. Neuronal aneuploidy in health and disease: a cytomic approach to understand the molecular individuality of neurons. Int J Mol Sci. 2009;10(4):1609–27. https://doi.org/10.3390/ijms10041609.
Article
CAS
Google Scholar
Tiganov AS, Yurov YB, Vorsanova SG, Yurov IY. Genomic instability in the brain: etiology, pathogenesis and new biological markers of psychiatric disorders. Vestn Ross Akad Med Nauk. 2012;67(9):45–53.
Article
Google Scholar
Paquola ACM, Erwin JA, Gage FH. Insights into the role of somatic mosaicism in the brain. Curr Opin Syst Biol. 2017;1:90–4. https://doi.org/10.1016/j.coisb.2016.12.004.
Article
Google Scholar
Potter H, Chial HJ, Caneus J, Elos M, Elder N, Borysov S, Granic A. Chromosome instability and mosaic aneuploidy in neurodegenerative and neurodevelopmental disorders. Front Genet. 2019;10:1092. https://doi.org/10.3389/fgene.2019.01092.
Article
CAS
Google Scholar
D’Gama AM. Somatic mosaicism and autism spectrum disorder. Genes (Basel). 2021;12(11):1699. https://doi.org/10.3390/genes12111699.
Article
CAS
Google Scholar
Kaeser G, Chun J. Brain cell somatic gene recombination and its phylogenetic foundations. J Biol Chem. 2020;295(36):12786–95. https://doi.org/10.1074/jbc.REV120.009192.
Article
CAS
Google Scholar
Yurov YB, Iourov IY, Monakhov VV, Soloviev IV, Vostrikov VM, Vorsanova SG. The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem. 2005. https://doi.org/10.1369/jhc.4A6430.2005.
Article
Google Scholar
Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, Pellestor F, Beresheva AK, Demidova IA, Kravets VS, Monakhov VV, Soloviev IV. Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS ONE. 2007;2(6):e558. https://doi.org/10.1371/journal.pone.0000558.
Article
CAS
Google Scholar
Rohrback S, Siddoway B, Liu CS, Chun J. Genomic mosaicism in the developing and adult brain. Dev Neurobiol. 2018;78(11):1026–48. https://doi.org/10.1002/dneu.22626.
Article
Google Scholar
Iourov IY, Liehr T, Vorsanova SG, Kolotii AD, Yurov YB. Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosome Res. 2006;14(3):223–9. https://doi.org/10.1007/s10577-006-1037-6.
Article
CAS
Google Scholar
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal cell death. Physiol Rev. 2018;98(2):813–80. https://doi.org/10.1152/physrev.00011.2017.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB. Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Res. 2013;139(3):181–8. https://doi.org/10.1159/000347053.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Liehr T, Yurov YB. Mosaike im Gehirn des Menschen. Diagnostische Relevanz in der Zukunft? Med Genet. 2014;26:342–5. https://doi.org/10.1007/s11825-014-0010-6.
Article
Google Scholar
Vorsanova SG, Yurov YB, Iourov IY. Dynamic nature of somatic chromosomal mosaicism, genetic-environmental interactions and therapeutic opportunities in disease and aging. Mol Cytogenet. 2020;13:16. https://doi.org/10.3390/ijms21218328.
Article
CAS
Google Scholar
Borden J, Manuelidis L. Movement of the X chromosome in epilepsy. Science. 1988;242(4886):1687–91. https://doi.org/10.1126/science.3201257.
Article
CAS
Google Scholar
Iourov I. To see an interphase chromosome or: how a disease can be associated with specific nuclear genome organization. BioDiscovery. 2012;4:5. https://doi.org/10.7750/BioDiscovery.2012.4.5.
Article
Google Scholar
Yurov YB, Vorsanova SG, Iourov IY. Human interphase chromosomes: biomedical aspects. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-6558-4.
Book
Google Scholar
Iourov IY, Liehr T, Vorsanova SG, Mendez-Rosado LA, Yurov YB. The applicability of interphase chromosome-specific multicolor banding (ICS-MCB) for studying neurodevelopmental and neurodegenerative disorders. Res Results Biomed. 2019;5(3):4–9. https://doi.org/10.18413/2658-6533-2019-5-3-0-1.
Article
Google Scholar
Liehr T. Nuclear architecture. In: Liehr T, editor. Cytogenomics. Cambridge: Academic Press; 2021. p. 297–305.
Chapter
Google Scholar
Bitman-Lotan E, Orian A. Nuclear organization and regulation of the differentiated state. Cell Mol Life Sci. 2021;78(7):3141–58. https://doi.org/10.1007/s00018-020-03731-4.
Article
CAS
Google Scholar
Iourov IY, Yurov YB, Vorsanova SG. Chromosome-centric look at the genome. In: Iourov I, Vorsanova S, Yurov Y, editors. Human interphase chromosomes—biomedical aspects. Springer; 2020. p. 157–70.
Chapter
Google Scholar
Deakin JE, Potter S, O’Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T. Chromosomics: bridging the gap between genomes and chromosomes. Genes (Basel). 2019;10(8):627. https://doi.org/10.3390/genes10080627.
Article
CAS
Google Scholar
Liehr T. From human cytogenetics to human chromosomics. Int J Mol Sci. 2019;20(4):826. https://doi.org/10.3390/ijms20040826.
Article
CAS
Google Scholar
Iourov IY, Vorsanova SG, Yurov YB. Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics. 2008;9(7):452–65. https://doi.org/10.2174/138920208786241216.
Article
CAS
Google Scholar
Liehr T. International System for Human Cytogenetic or Cytogenomic Nomenclature (ISCN): some thoughts. Cytogenet Genome Res. 2021;161(5):223–4. https://doi.org/10.1159/000516654.
Article
Google Scholar
Iourov IY, Vorsanova SG. Yuri B. Yurov (1951–2017). Mol Cytogenet. 2018;11:36. https://doi.org/10.1186/s13039-018-0383-3.
Article
Google Scholar