Moon HJ, Yim SV, Lee WK, Jeon YW, Kim YH, Ko YJ, et al. Identification of DNA copy-number aberrations by array-comparative genomic hybridization in patients with schizophrenia. Biochem Biophys Res Commun. 2006;344(2):531–9. doi:10.1016/j.bbrc.2006.03.156.
Article
CAS
PubMed
Google Scholar
Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989;342(6247):281–5. doi:10.1038/342281a0.
Article
CAS
PubMed
Google Scholar
Roback EW, Barakat AJ, Dev VG, Mbikay M, Chretien M, Butler MG. An infant with deletion of the distal long arm of chromosome 15 (q26.1––qter) and loss of insulin-like growth factor 1 receptor gene. Am J Med Genet. 1991;38(1):74–9. doi:10.1002/ajmg.1320380117.
Article
CAS
PubMed
Google Scholar
Battaglia A. The inv dup (15) or idic (15) syndrome (Tetrasomy 15q). Orphanet J Rare Dis. 2008;3:30. doi:10.1186/1750-1172-3-30.
Article
PubMed Central
PubMed
Google Scholar
Roberts SE, Maggouta F, Thomas NS, Jacobs PA, Crolla JA. Molecular and fluorescence in situ hybridization characterization of the breakpoints in 46 large supernumerary marker 15 chromosomes reveals an unexpected level of complexity. Am J Med Genet. 2003;73(5):1061–72. doi:10.1086/379155.
CAS
Google Scholar
Liehr T, Brude E, Gillessen-Kaesbach G, Konig R, Mrasek K, von Eggeling F, et al. Prader-Willi syndrome with a karyotype 47, XY,+min(15)(pter- > q11.1:) and maternal UPD 15–case report plus review of similar cases. Eur J Med Genet. 2005;48(2):175–81. doi:10.1016/j.ejmg.2005.01.004.
Article
PubMed
Google Scholar
Cotter PD, Ledesma CT, Dietz LG, Pusso S, Wohlferd MM, Goldberg JD. Prenatal diagnosis of supernumerary marker 15 chromosomes and exclusion of uniparental disomy for chromosome 15. Prenat Diagn. 1999;19(8):721–6.
Article
CAS
PubMed
Google Scholar
Dennis NR, Veltman MW, Thompson R, Craig E, Bolton PF, Thomas NS. Clinical findings in 33 subjects with large supernumerary marker(15) chromosomes and 3 subjects with triplication of 15q11-q13. Am J Med Genet A. 2006;140(5):434–41. doi:10.1002/ajmg.a.31091.
Article
CAS
PubMed
Google Scholar
Borelina D, Esperante S, Gutnisky V, Ferreiro V, Ferrer M, Giliberto F, et al. Supernumerary marker 15 chromosome in a patient with Prader-Willi syndrome. Clin Genet. 2004;65(3):242–3.
Article
CAS
PubMed
Google Scholar
Mann SM, Wang NJ, Liu DH, Wang L, Schultz RA, Dorrani N, et al. Supernumerary tricentric derivative chromosome 15 in two boys with intractable epilepsy: another mechanism for partial hexasomy. Hum Genet. 2004;115(2):104–11. 10.1007/s00439-004-1127-5.
Article
CAS
PubMed
Google Scholar
Huang XL, de Michelena MI, Mark H, Harston R, Benke PJ, Price SJ, et al. Characterization of an analphoid supernumerary marker chromosome derived from 15q25–qter using high-resolution CGH and multiplex FISH analyses. Clin Genet. 2005;68(6):513–9. doi:10.1111/j.1399-0004.2005.00523.x.
Article
PubMed
Google Scholar
Cheng SD, Spinner NB, Zackai EH, Knoll JH. Cytogenetic and molecular characterization of inverted duplicated chromosomes 15 from 11 patients. Am J Med Genet. 1994;55(4):753–9.
CAS
Google Scholar
Rineer S, Finucane B, Simon EW. Autistic symptoms among children and young adults with isodicentric chromosome 15. Am J Med Genet. 1998;81(5):428–33.
Article
CAS
PubMed
Google Scholar
McGinniss MJ, Brown DH, Burke LW, Mascarello JT, Jones MC. Ring chromosome X in a child with manifestations of Kabuki syndrome. Am J Med Genet. 1997;70(1):37–42.
Article
CAS
PubMed
Google Scholar
Cockwell AE, Davalos IP, Rivera HR, Crolla JA. FISH characterisation of dynamic mosaicism involving an inv dup(15) in a patient with mental retardation. Am J Med Genet. 2001;103(4):289–94.
Article
CAS
PubMed
Google Scholar
Shibuya Y, Tonoki H, Kajii N, Niikawa N. Identification of a marker chromosome as inv dup(15) by molecular analysis. Clin Genet. 1991;40(3):233–6.
Article
CAS
PubMed
Google Scholar
van Bon BW, Mefford HC, Menten B, Koolen DA, Sharp AJ, Nillesen WM, et al. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet. 2009;46(8):511–23. doi:10.1136/jmg.2008.063412.
Article
PubMed Central
PubMed
Google Scholar
Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, Vallero RO, et al. Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet. 2009;46(2):86–93. doi:10.1136/jmg.2008.061580.
Article
CAS
PubMed Central
PubMed
Google Scholar
Battaglia A, Parrini B, Tancredi R. The behavioral phenotype of the idic(15) syndrome. Am J Med Genet C: Semin Med Genet. 2010;154C(4):448–55. doi:10.1002/ajmg.c.30281.
Article
Google Scholar
Moeschler JB, Mohandas TK, Hawk AB, Noll WW. Estimate of prevalence of proximal 15q duplication syndrome. Am J Med Genet. 2002;111(4):440–2. doi:10.1002/ajmg.10419.
Article
PubMed
Google Scholar
Yang J, Yang Y, Huang Y, Hu Y, Chen X, Sun H, et al. A study of two Chinese patients with tetrasomy and pentasomy 15q11q13 including Prader-Willi/Angelman syndrome critical region present with developmental delays and mental impairment. BMC Med Genet. 2013;14:9. doi:10.1186/1471-2350-14-9.
Article
PubMed Central
PubMed
Google Scholar
Wang NJ, Liu D, Parokonny AS, Schanen NC. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Med Genet. 2004;75(2):267–81. doi:10.1086/422854.
CAS
Google Scholar
Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384–8. doi:10.1038/nature01339.
Article
CAS
PubMed
Google Scholar
Lacaze E, Gruchy N, Penniello-Valette MJ, Plessis G, Richard N, Decamp M, et al. De novo 15q13.3 microdeletion with cryptogenic West syndrome. Am J Med Genet A. 2013;161A(10):2582–7. doi:10.1002/ajmg.a.36085.
PubMed
Google Scholar
Valbonesi S, Magri C, Traversa M, Faraone SV, Cattaneo A, Milanesi E, et al. Copy number variants in attention-deficit hyperactive disorder: identification of the 15q13 deletion and its functional role. Psychiatr Genet. 2014. doi:10.1097/YPG.0000000000000056.
Google Scholar
Soler-Alfonso C, Carvalho CM, Ge J, Roney EK, Bader PI, Kolodziejska KE, et al. CHRNA7 triplication associated with cognitive impairment and neuropsychiatric phenotypes in a three-generation pedigree. Eur J Med Genet: EJHG. 2014;22(9):1071–6. doi:10.1038/ejhg.2013.302.
CAS
Google Scholar
Lui JC, Finkielstain GP, Barnes KM, Baron J. An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R189–96. doi:10.1152/ajpregu.00182.2008.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tsang HT, Edwards TL, Wang X, Connell JW, Davies RJ, Durrington HJ, et al. The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Hum Mol Genet. 2009;18(20):3805–21. doi:10.1093/hmg/ddp324.
Article
CAS
PubMed Central
PubMed
Google Scholar
Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S, Robeck T, et al. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet. 2007;3(12), e235. doi:10.1371/journal.pgen.0030235.
Article
PubMed Central
PubMed
Google Scholar
Sharp AJ, Mefford HC, Li K, Baker C, Skinner C, Stevenson RE, et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat Genet. 2008;40(3):322–8. doi:10.1038/ng.93.
Article
CAS
PubMed Central
PubMed
Google Scholar
Masurel-Paulet A, Andrieux J, Callier P, Cuisset JM, Le Caignec C, Holder M, et al. Delineation of 15q13.3 microdeletions. Clin Genet. 2010;78(2):149–61. doi:10.1111/j.1399-0004.2010.01374.x.
Article
CAS
PubMed
Google Scholar
Campos CM, Zanardo EA, Dutra RL, Kulikowski LD, Kim CA. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects. Arquivos brasileiros de cardiologia. 2014;104(1):24–31.
Lavallee G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME, et al. The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J. 2006;25(21):5201–13. doi:10.1038/sj.emboj.7601379.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nemer M, Horb ME. The KLF family of transcriptional regulators in cardiomyocyte proliferation and differentiation. Cell Cycle. 2007;6(2):117–21.
Article
CAS
PubMed
Google Scholar
Derwinska K, Bartnik M, Wisniowiecka-Kowalnik B, Jagla M, Rudzinski A, Pietrzyk JJ, et al. Assessment of the role of copy-number variants in 150 patients with congenital heart defects. Med Wieku Rozwoj. 2012;16(3):175–82.
PubMed
Google Scholar
Hamid A, Weise A, Voigt M, Bucksch M, Kosyakova N, Liehr T, et al. Clinical impact of proximal autosomal imbalances. Balkan j med gen : BJMG. 2012;15(2):15–22. doi:10.2478/bjmg-2013-0002.
CAS
Google Scholar
Davis R, Peters DH, McTavish D. Valproic acid: A reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs. 1994;47(2):332–72.
Article
CAS
PubMed
Google Scholar
Grant SM, Heel RC. Vigabatrin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motor control. Drugs. 1991;41(6):889–926.
Article
CAS
PubMed
Google Scholar
Shelp BJ, Bown AW, McLean MD. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 1999;4(11):446–52.
Article
PubMed
Google Scholar
Small supernumerary marker chromosomes (sSMC) [database on the Internet]. Available from: http://ssmc-tl.com/chromosome-15.html#sei.
Caspersson T, Zech L, Johansson C, Modest EJ. Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma. 1970;30(2):215–27.
Article
CAS
PubMed
Google Scholar
Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A. 1988;85(23):9138–42.
Article
CAS
PubMed Central
PubMed
Google Scholar
Glatt K, Sinnett D, Lalande M. The human gamma-aminobutyric acid receptor subunit beta 3 and alpha 5 gene cluster in chromosome 15q11-q13 is rich in highly polymorphic (CA)n repeats. Genomics. 1994;19(1):157–60. doi:10.1006/geno.1994.1027.
Article
CAS
PubMed
Google Scholar
Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millasseau P, et al. The 1993–94 Genethon human genetic linkage map. Nat Genet. 1994;7(2 Spec No):246–339. doi:10.1038/ng0694supp-246.
Article
CAS
PubMed
Google Scholar
Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818–21.
Article
CAS
PubMed
Google Scholar