Sinkar P, Devi SR. Complex chromosomal rearrangement: a case report to emphasize the need for parental karyotyping and genetic counseling. J Hum Reprod Sci. 2020;13(1):68–70.
Article
Google Scholar
Pellestor F, Anahory T, Lefort G, Puechberty J, Liehr T, Hedon B, et al. Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update. 2011;17(4):476–94.
Article
CAS
Google Scholar
Madan K. Balanced complex chromosome rearrangements: reproductive aspects. A review. Am J Med Genet Part A. 2012;158A(4):947–63.
Article
Google Scholar
He P, Wei X, Xu Y, Huang J, Tang N, Yan T, et al. Analysis of complex chromosomal rearrangements using a combination of current molecular cytogenetic techniques. Mol Cytogenet. 2022;15(1):20.
Article
CAS
Google Scholar
Xing L, Shen Y, Wei X, Luo Y, Yang Y, Liu H, et al. Long-read Oxford nanopore sequencing reveals a de novo case of complex chromosomal rearrangement involving chromosomes 2, 7, and 13. Mol Genet Genomic Med. 2022. https://doi.org/10.1002/mgg3.2011.
Article
PubMed
PubMed Central
Google Scholar
De Gregori M, Ciccone R, Magini P, Pramparo T, Gimelli S, Messa J, et al. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet. 2007;44(12):750–62.
Article
Google Scholar
Feenstra I, Hanemaaijer N, Sikkema-Raddatz B, Yntema H, Dijkhuizen T, Lugtenberg D, et al. Balanced into array: genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis. Eur J Hum Genet EJHG. 2011;19(11):1152–60.
Article
Google Scholar
Zhang Y, Dai Y, Tu Z, Li Q, Zhang L, Wang L. Array-CGH detection of three cryptic submicroscopic imbalances in a complex chromosome rearrangement. J Genet. 2009;88(3):369–72.
Article
Google Scholar
Michaelson-Cohen R, Murik O, Zeligson S, Lobel O, Weiss O, Picard E, et al. Combining cytogenetic and genomic technologies for deciphering challenging complex chromosomal rearrangements. Mol Genet Genomics. 2022;297(4):925–33.
Article
CAS
Google Scholar
Zhang S, Pei Z, Lei C, Zhu S, Deng K, Zhou J, et al. Detection of cryptic balanced chromosomal rearrangements using high-resolution optical genome mapping. J Med Genet. 2022. https://doi.org/10.1136/jmedgenet-2022-108553.
Article
PubMed
Google Scholar
Hao N, Zhou J, Li MM, Luo WW, Zhang HZ, Qi QW, et al. Efficacy and initial clinical evaluation of optical genome mapping in the diagnosis of structural variations. Zhonghua Yu Fang Yi Xue Za Zhi. 2022;56(5):632–9.
CAS
PubMed
Google Scholar
Bartels I, Starke H, Argyriou L, Sauter SM, Zoll B, Liehr T. An exceptional complex chromosomal rearrangement (CCR) with eight breakpoints involving four chromosomes (1;3;9;14) in an azoospermic male with normal phenotype. Eur J Med Genet. 2007;50(2):133–8.
Article
Google Scholar
Salahshourifar I, Shahrokhshahi N, Tavakolzadeh T, Beheshti Z, Gourabi H. Complex chromosomal rearrangement involving chromosomes 1, 4 and 22 in an infertile male: case report and literature review. J Appl Genet. 2009;50(1):69–72.
Article
CAS
Google Scholar
Kim JW, Chang EM, Song SH, Park SH, Yoon TK, Shim SH. Complex chromosomal rearrangements in infertile males: complexity of rearrangement affects spermatogenesis. Fertil Steril. 2011;95(1):349–52 (52.e1-5).
Article
Google Scholar
Liehr T. UPD related syndromes caused by imprinting. Uniparental disomy (UPD) in clinical genetics: a guide for clinicians and patients. Berlin: Springer; 2014. p. 49–77.
Google Scholar
Aristidou C, Theodosiou A, Ketoni A, Bak M, Mehrjouy MM, Tommerup N, et al. Cryptic breakpoint identified by whole-genome mate-pair sequencing in a rare paternally inherited complex chromosomal rearrangement. Mol Cytogenet. 2018;11:34.
Article
Google Scholar
Giardino D, Corti C, Ballarati L, Finelli P, Valtorta C, Botta G, et al. Prenatal diagnosis of a de novo complex chromosome rearrangement (CCR) mediated by six breakpoints, and a review of 20 prenatally ascertained CCRs. Prenat Diagn. 2006;26(6):565–70.
Article
CAS
Google Scholar
Mak AC, Lai YY, Lam ET, Kwok TP, Leung AK, Poon A, et al. Genome-wide structural variation detection by genome mapping on nanochannel arrays. Genetics. 2016;202(1):351–62.
Article
CAS
Google Scholar
Levy-Sakin M, Pastor S, Mostovoy Y, Li L, Leung AKY, McCaffrey J, et al. Genome maps across 26 human populations reveal population-specific patterns of structural variation. Nat Commun. 2019;10(1):1025.
Article
Google Scholar
Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder MJ, et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science (New York, NY). 2021;372(6537):eabf7117.
Article
CAS
Google Scholar
Mantere T, Neveling K, Pebrel-Richard C, Benoist M, van der Zande G, Kater-Baats E, et al. Optical genome mapping enables constitutional chromosomal aberration detection. Am J Hum Genet. 2021;108(8):1409–22.
Article
CAS
Google Scholar