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Identification of an SRY‑negative 46,XX 
infertility male with a heterozygous deletion 
downstream of SOX3 gene
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Abstract 

Background:  A male individual with a karyotype of 46,XX is very rare. We explored the genetic aetiology of an infer-
tility male with a kayrotype of 46,XX and SRY negative.

Methods:  The peripheral blood sample was collected from the patient and subjected to a few genetic testing, 
including chromosomal karyotyping, azoospermia factor (AZF) deletion, short tandem repeat (STR) analysis for AMELX, 
AMELY and SRY, fluorescence in situ hybridization (FISH) with specific probes for CSP 18/CSP X/CSP Y/SRY, chromo-
somal microarray analysis (CMA) for genomic copy number variations(CNVs), whole-genome analysis(WGA) for 
genomic SNV&InDel mutation, and X chromosome inactivation (XCI) analysis.

Results:  The patient had a karyotype of 46,XX. AZF analysis showed that he missed the AZF region (including a, b 
and c) and SRY gene. STR assay revealed he possessed the AMELX in the X chromosome, but he had no the AMELY 
and SRY in the Y chromosome. FISH analysis with CSP X/CSP Y/SRY showed only two X centromeric signals, but none 
Y chromosome and SRY. The above results of the karyotype, FISH and STR analysis did not suggest a Y chromosome 
chimerism existed in the patient’s peripheral blood. The result of the CMA indicated a heterozygous deletion with 
an approximate size of 867 kb in Xq27.1 (hg19: chrX: 138,612,879–139,480,163 bp), located at 104 kb downstream 
of SOX3 gene, including F9, CXorf66, MCF2 and ATP11C. WGA also displayed the above deletion fragment but did not 
present known pathogenic or likely pathogenic SNV&InDel mutation responsible for sex determination and develop-
ment. XCI assay showed that he had about 75% of the X chromosome inactivated.

Conclusions:  Although the pathogenicity of 46,XX male patients with SRY negative remains unclear, SOX3 expression 
of the acquired function may be associated with partial testis differentiation of these patients. Therefore, the CNVs 
analysis of the SOX3 gene and its regulatory region should be performed routinely for these patients.

Keywords:  46,XX male, SRY-negative, Fluorescence in situ hybridization, Chromosome microarray chip, Whole 
genome analysis, Sex development and differentiation
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Background
46,XX sex reversal is a disease caused by the abnor-
malities of ovarian development, characterized by 
46,XX karyotype and male phenotype, often referred 

to as 46,XX male [1]. 46,XX male is very rare, and the 
incidence rate in male newborns is about 1/20,000 [2]. 
46,XX male is often classified into 46,XX(SRY+) male 
or 46,XX(SRY-) male according to the presence or 
absence of SRY gene in his genome. 46,XX(SRY-) males 
are only a minority of 46,XX males, as the percentage 
of 46,XX(SRY +) males caused by SRY translocation 
and Y chromosome chimerism is more than 90% [3–5]. 
There are some causes of 46,XX(SRY-) males previously 
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reported, such as the dose change or mutation of SOX9 
gene [6, 7], loss of function mutation of ovarian stim-
ulating gene WNT4 or RSPO1 gene [8, 9], heterozy-
gous mutation of NR5A1 gene [10, 11]. Furthermore, 
the arrangement of the SRY-box transcription factor 3 
(SOX3) gene was considered as a cause of this disease 
[12]. We will proceed with the molecular genetic iden-
tification of a 46,XX(SRY-) male patient admitted to our 
clinic. The research results will enrich the theoretical 
knowledge and guide the clinical treatment of this kind 
of patient.

Methods
Subject
A 31-years-old patient, heigh 166 cm and weigh 52.5 kg, 
went to our clinic due to primary infertility. Physical 
examination showed a male appearance, a thin beard, 
Adam’s apple, two broad bean-size of testicles and an 
average size of the penis. No sperm was found in three 
routine semen tests. Hormone test results were follow: 
Testosterone: 1.75  ng/mL(reference value range(RVR): 
2.80–8.00), progesterone: 0.11  ng/mL(RVR: 0.20–1.40), 
prolactin: 208.44uIU/mL(RVR: 86.00–324.00), estradiol: 
5.00  pg/mL(RVR:27.10–52.20), luteinizing hormone: 
29.32mIU/mL(RVR: 1.70–8.60), follicle-stimulating hor-
mone 37.88mIU/mL(RVR: 1.50–12.40). The patient had 
no siblings and denied family history. His parents are 
not consanguineous, had no abnormal phenotype, and 
refused the laboratory testing and physical examination.

Specimen preparation and DNA extraction
5  mL of venous blood was collected from patients with 
heparin sodium and EDTA-Na2 anticoagulant tubes, 
respectively, and ready for use. According to the manu-
facturer’s protocols, genomic DNA was extracted from 
EDTA-Na2 anticoagulated blood using QIAamp DNA 
Mini Kit (QIAGEN Company). DNA was qualified 
when the concentration was more than 30  ng/uL, the 
OD260/280 value between 1.8 to 2.0 determined by ultra-
violet spectrophotometer Nanodrop 1C (Thermo Fisher 
Scientific).

Chromosome karyotype analysis
Lymphocytes of heparin sodium anticoagulated blood 
were cultured, harvested, and prepared for microscope 
slides before Giemsa staining according to conventional 
cell culture methods. Zeiss karyotype analysis system 
(Karl Zeiss, Germany) was adopted for chromosome 
count and karyotype analysis, the same as previous stud-
ies [13].

Azoospermia factor (AZF) detection
Multiplex amplified was performed with AZF detection 
kit (Yaneng corp.), then 2.0% agarose electrophoresis and 
imaging, according to manufacturer’s instructions.

Short tandem repetition(STR) analysis
STR sites were performed by multiplex fluorescence 
quantitative PCR amplification with Devyser compact 
v3 kit (Devyser AB, Sweden). The amplification condi-
tion was 95 ℃ for 15 min; 94 ℃ 30 s, 58 ℃ 1 min 30 s, 
72 ℃ 1 min 30 s, 27 cycles;72 ℃ for 30 min. The amplified 
products were subjected to capillary electrophoresis with 
AB 3500Dx gene analyzer, and the electrophoresis data 
were analyzed by GeneMapper software. The fluores-
cence peaks of AMELX in Xp22.2, AMELY in Yp11.2 and 
SRY in Yp11.31 were used to evaluate the patient’s sex 
chromosomes. The experimental method was referred to 
in the previous report [14].

Fluorescence in situ hybridization (FISH) analysis
Lymphocytes in EDTA-Na2 anticoagulant blood were 
isolated by lymphocyte separation solution and hybrid-
ized by CSP 18/CSP X/CSP Y probe (Jin Pujia corp.), 
using the same method as previously reported [15]. 
Meanwhile, the metaphase cells harvested from lympho-
cyte culture were co-hybridized with CSP X/CSP Y probe 
(Jinpuga Company) and SRY probe (Abbott Company). 
The MIX-1 was prepared by SRY hybridization buffer and 
SRY probe at a ratio of 9:1, and the MIX-2 was made with 
CSP hybridization buffer and CSP X/CSP Y centromeric 
probe at a ratio of 4:1, and then added the MIX-1 and 
MIX-2 to the metaphase cells loaded on the glass slide. 
The Glass slide was denaturated at 78 ℃ for 10 min and 
hybridized at 42 ℃ for more than 16 h. Refer to reagent 
instruction for the experimental operation. A fluores-
cence microscope observed the fluorescence signal of 
hybridization.

Chromosomal microarray analysis (CMA) analysis
500-1000 ng of patient DNA and the equivalent amount 
of reference DNA was taken for simultaneous experi-
ments. After digestion, the labelled patient sample was 
mixed with the reference sample and co-hybridized to 
SurePrint G3 CGH + SNP (180  K) chip. Agilent DNA 
Microarray Scanner was used to scan the fluorescence 
signals after the slides were washed. Agilent Feature 
Extraction Software extracted the data from the images(.
tif ) and converted it to log-ratios data. Agilent CytoG-
enomics software was used to analyze CNV. Agilent 
Technologies provide the reagents, chips, instruments 
and analytical software. Refer to the instructions for spe-
cific methods. CMA analysis mainly adopts some online 
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databases such as OMIM (https://​omim.​org/), DGV 
(http://​dgv.​tcag.​ca/​dgv/), Decipher (https://​decip​her.​
sanger.​ac.​uk/), ClinGen (https://​wwW.​clini​calge​nome.​
org/), ClinVar (https://​www.​ncbi.​nlm.​nih.​gov/​clinv​ar/).

Whole genome analysis (WGA) analysis
Illumina HiSeq PE150 high-throughput dual-terminal 
sequencing was performed after random interruption 
into tiny fragments of DNA, terminal repair, phosphoryl-
ation, a-tail addition, connector and library construction. 
Quality control was carried out on the raw sequencing 
data to obtain high-quality clean data; Then, fastp soft-
ware [16] was used for comparative analysis of clean data 
and human reference genome sequence, and data such as 
sequencing depth and coverage of the target region were 
counted and obtained Bam files. Finally, SNP/InDel was 
detected and annotated based on Bam files to obtain all 
mutation information. The Haplotyper tool of Sentieo 
software [17] was used to detect SNP and InDel muta-
tion, and ANNOVAR software [18] was used to annotate 
the mutation results accompanied by multiple databases 
(such as dbSNP, 1000G, ESP6500, HGMD, OMIM). 
Meanwhile, CNVkit software was used to analyze CNV 
[19].

X chromosome inactivation detection
The sample DNA of undigested and digested by HpaII, 
which methylation-sensitive restriction enzyme, was 
amplified by androgen receptor (AR) gene-specific prim-
ers and capillary electrophoresis subsequently. B2M was 
used as the reference gene, and the digestion proceeded 
overnight in a 37 ℃ water bath. Multiplex PCR amplified 
the samples before and after enzyme digestion, respec-
tively. As reported in the literature [20], FAM fluorescein 
was added to the 5 ’end of the forward primer [21]. PCR 
reaction conditions followed: 95 ℃ for 5  min; 28 cycles 
of 95 ℃ for 45 s, 58 ℃ for 30 s, 72 ℃ for 30 s; 72 ℃ for 
7 min. PCR products were subjected to capillary electro-
phoresis. XCI ratio was calculated according to formula 
(d1/u1)/(d1/u1 + d2/u2), and XCI bias was confirmed if 
the XCI ratio > 70% [22, 23].

Results
Result of cytogenetic analysis
The patient’s karyotype was 46,XX, as shown in Fig. 1.

Result of AZF detection
The electrophoresis result of the patient showed neither 
SRY nor AZF bands (including sY84 and sY86 of AZFa, 

Fig. 1  Chromosome karyotype of the patient. The sex chromosomes of the patient are two X chromosomes, as the arrow indicated

https://omim.org/
http://dgv.tcag.ca/dgv/
https://decipher.sanger.ac.uk/
https://decipher.sanger.ac.uk/
https://wwW.clinicalgenome.org/
https://wwW.clinicalgenome.org/
https://www.ncbi.nlm.nih.gov/clinvar/
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sY127 and sY134 of AZFb, sY254 and sY255 of AZFc) 
(The electrophoregram did not show).

Result of STR analysis
The STR result of the patient showed a fluorescence peak 
of AMELX but not that of the AMELY and SRY, as shown 
in Fig. 2.

Result of FISH analysis
FISH result of interphase cells hybridized by CSP 18/CSP 
X/CSP Y probes showed two 18 and two X fluorescence 
signals but no Y signal, as shown in Fig.  3a. Another 
FISH result of metaphase cells hybridized with CSP X/
CSP Y/SRY probes showed two green signals of X chro-
mosome centromere, but not that of SRY and Y chromo-
some, as shown in Fig. 3b.

Results of Y chromosome chimerism analysis
A single Y chromosome was not found in 200 cells in kar-
yotype analysis. Moreover, Neither AMELY and SRY fluo-
rescence peaks were detected in the STR analysis results, 
nor Y chromosome and SRY fluorescence signals were 
shown in the FISH result. A comprehensive evaluation 
of the above detection results showed no Y chromosome 
chimerism in the patient’s peripheral blood.

Results of CMA analysis
Taking 46,XX female genomes as a standard refer-
ence, the patient’s Xq27.1 (hg19: chrX: 138,612,879–
139,480,163  bp) had about 867  Kb of heterozygotic 
deletion, and the deletion region was located at 104  Kb 
downstream of the SOX3 gene, including F9, CXorf66, 
MCF2, ATP11C four protein-coding genes, as shown in 
Fig. 4a and b.

Fig. 2  Capillary electrophoresis diagram of STR of the 46,XX (SRY-) male patient. The STR result of the patient showed a fluorescence peak of AMELX 
but not that of AMELY and SRY. The AMELX, AMELY and SRY represent the loci of Xp22.2, Yp11.2 and Yp11.31, respectively. The solid arrow indicated a 
fluorescence peak of a specific amplicon, while the hollow arrow indicated no
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Fig. 3  a FISH image of interphase cells of the patient detected with the CSP 18, CSP X, and CSP Y probes. The blue signal represented chromosome 
18, while the green represented chromosome X, as indicated by the arrows. b FISH image of metaphase cells of the patient hybridized with the CSP 
X, CSP Y and SRY probes. The green represented chromosome X, as indicated by the arrows

Fig. 4  a CMA results of the 46,XX (SRY-) male patient. There was about 867 kb heterozygous deletion in Xq27.1 (hg19: chrX: 138,612,879–
139,480,163 bp), as the line indicated. b Schematic diagram of deletion region of the 46,XX (SRY-) male patient. The deletion region (hg19: chrX: 
138,612,879–139,480,163 bp) is located at 104 kb downstream of the SOX3 gene in Xq27.1. The dotted line indicated the deletion region of 867 kb
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Results of WGA analysis
The WGA results showed no pathogenic or likely patho-
genic SNV&InDel variant related to sexual development, 
which can clearly explain the patient phenotype; mean-
while, the results also showed about 892  kb heterozy-
gous deletion (hg19: chrX: 138,609,392–139,501,392) in 
Xq27.1.

Results of XCI analysis
The XCI ratio of the patient was about 75% (as shown in 
Fig.  5), which indicated he had a non-random inactiva-
tion of the X chromosome.

Comparison of the clinical phenotypes of 46,XX 
SRY‑negative male patients with CNV of SOX3
Table 1 summarises the clinical features of 46,XX males 
with SRY-negative individuals involved in the CNV of 
SOX3. The patients all had the typical male appearance 

and showed common abnormal phenotypes, including 
spermatogenous testicular dysplasia, because they were 
absent from the entire Y chromosome. Among the seven 
patients, five patients (case 1, 3, 4, 5, 6) had microdu-
plications spanning the entire SOX3 gene, another two 
patients, including case 2 and our patient, had micro-
deletions near the SOX3 gene, which were speculated to 
play a regulatory role for SOX3 expression. Our patient 
showed a CNV near the SOX3 gene in CMA, and WGA 
ruled out other SNV&InDel mutations associated with 
sex determination and development. Meanwhile, he had 
a skewed X chromosome inactivation, which was not 
inconsistent with case 1.

Discussion
The SRY gene is recognized as the best TDF candidate 
gene. As long as the SRY gene exists in the individual’s 
genome, male gonadal development will occur even 

Fig. 5  The X chromosome inactivation results of the 46,XX (SRY-) male patient. The ordinate and abscissa represent fluorescence intensity and 
fragment length. The figures near the fluorescence peaks indicate the height of fluorescence peaks. The black arrow indicates the amplified 
products of the reference gene. After complete digestion, there is no amplified products peak (as shown below). The red and green arrows indicate 
the two alleles of the AR gene in the X chromosomes. X chromosome inactivation ratio was calculated according to the formula (d1/u1)/(d1/
u1 + d2/u2)*100%. This patient’s X chromosome inactivation ratio was about 75%, which was non-random. d1: the height of the higher peak after 
enzyme digestion, u1: the height of the undigested peak, which corresponds to d1; d2: the height of the shorter peak after digestion; u2: the height 
of the undigested peak, which corresponds to d2
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without the Y chromosome; this is the primary mecha-
nism of 46,XX(SRY +) male pathogenesis. Therefore, 
we should pay more attention to the Y chromosome 
chimerism in 46,XX(SRY-) males and rule out as much 
as possible. The Y chromosome was not found in our 
patient’s peripheral blood derived from the mesoderm 
through several experimental analyses. However, the 
possibility of hidden Y chromosome mosaicism in other 
tissues developed from the endoderm or ectoderm can-
not be excluded completely. Of course, it is not easy to 
find that mosaicism exists in the gonad tissue due to its 
unavailability.

The rearrangement of the SOX3 gene has confirmed 
the causes of some 46,XX(SRY-) male individuals in pre-
vious reports [12, 24]. SOX3 gene is one of 20 SOX(SRY-
related HMG-box) gene family members. Stevanovic 
et  al. cloned the SOX3 gene and identified its location 
at Xq27.1 in 1993 [25]. Its sequence is highly conserved 
among different species. The SOX3 gene is ancestral to 
the SRY gene [12, 26], so it has high homology with SRY 
and other SOX family genes. SOX3 gene consists of a sin-
gle exon and contains an HMG box, encoding 446 amino 
acids of a transcription factor sox3 protein expressed 
in vertebrate embryos’ central nervous system [27]; it 
plays a vital role in the pituitary, craniofacial and adrenal 
development. The variation of the SOX3  gene is associ-
ated with X-linked mental retardation, growth hormone 
deficiency, X-linked hypothyroidism, 46,XX male sex 
reversal, and other diseases [12, 28–31].

Loss-of-function of SOX3 gene mutation did not 
cause the abnormality of sex determination in mice and 
humans [32]. However, studies in transgenic mice had 
shown that in-situ expression of SOX3 in bipotent gonads 
resulted in up-regulation of Sox9 expression, testicu-
lar induction and XX male sex reversal. Moalem S et al. 
provided evidence of the duplication of the SOX3 in XX 
bipotent gonads causing the acquisition of the SOX3 
function [33], which was related to partial testis differ-
entiation in XX mice lacking the SRY gene. Moreover, 
overexpression of SOX3, synergistically expression with 
SF1, up-regulated SOX9 stimulated gonad development 
into testis in XX mice [12]. The SRY gene was derived 
from regulatory region mutation of the SOX3 gene and 
expressed in the early gonad. The data of transgenic mice 
indicated that SOX3 and SRY were interchangeable in sex 
determination function.

The variation types of the SOX3 gene associated with 
46,XX males were all the CNV in previous reports. To 
date, 6 cases of 46,XX males related to the SOX3 CNV 
have been reported. In some cases, the copy number 
duplication of the SOX3 gene resulted in changing gene 
product dose [33–35]; among other cases, it was specu-
lated that the CNV had a position effect on the SOX3 

gene expression because the CNV did not contain the 
SOX3 gene but was only close to the region of the SOX3 
gene, or the breakpoint of CNV fell in the regulatory 
region of SOX3 [12, 36]. CMA showed that our patient 
had a heterozygous deletion of about 867  kb in Xq27.1 
(hg19: chrX: 138,612,879–139,480,163  bp), which 
was located at 104  kb downstream of the SOX3 gene, 
including F9, CXorf66, MCF2 and ATP11C; Meanwhile, 
whole-genome sequencing also found an 892  kb hete-
rozygosity deletion in Xq27.1 (hg19: chrX: 138,609,392–
139,501,392), and no SNV&InDel mutation associated 
with abnormal sex determination and development. No 
similar report was found in the DGV database about 
this deletion area, and no sexual reversal phenotype was 
reported in Decipher and ClinVar databases. Similar to 
previous reports [12, 34], we speculated that the dele-
tion region might involve the regulation region of the 
SOX3 gene, leading to determination and differentiation 
of male testis through weakening inhibition of SOX3 and 
increasing expression SOX3 [12, 24, 35].

Similar to the two adults patients reported by Sutton 
E et  al. [12], the main features of our patient are azoo-
spermia and infertility [37] because of a deletion of the 
entire Y chromosome. Microspermatocentesis is not rec-
ommended for this patient because his testis produces no 
sperm, and the plan of donated sperm was introduced to 
him.

Since the deletion of our patient existed in the X 
chromosome, the XCI factor affecting the clinical sig-
nificance should be considered. The XCI is a dose-
compensation mechanism in XX individuals. It usually 
occurs in early embryonic development as one of the 
X chromosomes in a woman is inactivated, with only 
one paternal or maternal chromosome being expressed 
in each cell of the female individual. In general, XCI is 
random, i.e., the inactivation ratio of the two X chro-
mosomes in females is 50%: 50% [38]. In 46,XX (SRY+) 
males, some studies [21, 39] showed a high degree of 
XCI bias (greater than 90%). Their phenotype differed 
with the variable inactivation of the X chromosome 
carrying the SRY gene [40, 41]. Here, we conducted 
the XCI analysis of the peripheral blood in 46,XX 
male(SRY-) patient for the first time. The XCI ratio 
was about 75%, a moderate XCI bias. We speculate 
that the expression of positive selection of the deficient 
X chromosomes, which contained the deleted frag-
ment, results in the development of male gonads of the 
patient, similar to previous reports [42]. The XCI ratio 
of gonads tissues may differ from peripheral blood [22]. 
However, it cannot be accurately known because the 
sample is inaccessible. We could not know the origin 
of the Xq27.1 microdeletion in the downstream region 
of the SOX3 gene of the patient because the relevant 
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results of the patient’s parents were not available. We 
have a tentative assumption that the CNV might reg-
ulate the SOX3 gene expression, thus leading to the 
patient with a karyotype of 46,XX SRY-negative devel-
oping into a male. The pathogenicity of CNV has not 
been confirmed, and this is our upcoming research task 
to be performed.

At present, the pathogenesis of SRY positive 46,XX 
male patients is relatively straightforward. However, 
for SRY negative 46,XX male, the molecular mecha-
nism, signalling pathway, and genetic regulation are 
remain unknown, and the diagnosis and treatment 
are still relatively complex. Sutton et  al. [12] identi-
fied three arrangements containing or adjacent to the 
SOX3 gene, accounting for 19% (3/16) in 16 SRY-neg-
ative 46,XX male patients. Subsequently, several case 
reports indicated that SOX3 was a critical pathogenic 
factor of these patients. Therefore, it is crucial to con-
duct the CNV determination of the SOX3 gene in all 
46,XX(SRY-) males. It is noteworthy that the current 
and reported SOX3 duplications or deletions are below 
the detection threshold of conventional karyotype and 
can be found using CMA. Therefore, CMA analysis 
is routinely recommended to the CNV of SOX3, and 
high-throughput sequencing such as WGA can simul-
taneously proceed to exclude other SNV/INDEL muta-
tions. In addition, the XCI analysis of these patients 
also should be considered.
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