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Abstract

Background: A male individual with a karyotype of 46,XX is very rare. We explored the genetic aetiology of an infer-

tility male with a kayrotype of 46,XX and SRY negative.

Methods: The peripheral blood sample was collected from the patient and subjected to a few genetic testing,
including chromosomal karyotyping, azoospermia factor (AZF) deletion, short tandem repeat (STR) analysis for AMELX,
AMELY and SRY, fluorescence in situ hybridization (FISH) with specific probes for CSP 18/CSP X/CSP Y/SRY, chromo-
somal microarray analysis (CMA) for genomic copy number variations(CNVs), whole-genome analysis(WGA) for
genomic SNV&InDel mutation, and X chromosome inactivation (XCl) analysis.

Results: The patient had a karyotype of 46,XX. AZF analysis showed that he missed the AZF region (including a, b
and c) and SRY gene. STR assay revealed he possessed the AMELX in the X chromosome, but he had no the AMELY
and SRY in the Y chromosome. FISH analysis with CSP X/CSP Y/SRY showed only two X centromeric signals, but none
Y chromosome and SRY. The above results of the karyotype, FISH and STR analysis did not suggest a Y chromosome
chimerism existed in the patient’s peripheral blood. The result of the CMA indicated a heterozygous deletion with

an approximate size of 867 kb in Xg27.1 (hg19: chrX: 138,612,879-139,480,163 bp), located at 104 kb downstream

of SOX3 gene, including F9, CXorf66, MCF2 and ATP11C. WGA also displayed the above deletion fragment but did not
present known pathogenic or likely pathogenic SNV&InDel mutation responsible for sex determination and develop-
ment. XCl assay showed that he had about 75% of the X chromosome inactivated.

Conclusions: Although the pathogenicity of 46,XX male patients with SRY negative remains unclear, SOX3 expression
of the acquired function may be associated with partial testis differentiation of these patients. Therefore, the CNVs
analysis of the SOX3 gene and its regulatory region should be performed routinely for these patients.

Keywords: 46,XX male, SRY-negative, Fluorescence in situ hybridization, Chromosome microarray chip, Whole

genome analysis, Sex development and differentiation

Background

46,XX sex reversal is a disease caused by the abnor-
malities of ovarian development, characterized by
46,XX karyotype and male phenotype, often referred
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to as 46,XX male [1]. 46,XX male is very rare, and the
incidence rate in male newborns is about 1/20,000 [2].
46,XX male is often classified into 46,XX(SRY~+) male
or 46,XX(SRY-) male according to the presence or
absence of SRY gene in his genome. 46,XX(SRY-) males
are only a minority of 46,XX males, as the percentage
of 46,XX(SRY+) males caused by SRY translocation
and Y chromosome chimerism is more than 90% [3-5].
There are some causes of 46,XX(SRY-) males previously
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reported, such as the dose change or mutation of SOX9
gene [6, 7], loss of function mutation of ovarian stim-
ulating gene WNT4 or RSPOI1 gene [8, 9], heterozy-
gous mutation of NR5AI gene [10, 11]. Furthermore,
the arrangement of the SRY-box transcription factor 3
(SOX3) gene was considered as a cause of this disease
[12]. We will proceed with the molecular genetic iden-
tification of a 46,XX(SRY-) male patient admitted to our
clinic. The research results will enrich the theoretical
knowledge and guide the clinical treatment of this kind
of patient.

Methods

Subject

A 31-years-old patient, heigh 166 cm and weigh 52.5 kg,
went to our clinic due to primary infertility. Physical
examination showed a male appearance, a thin beard,
Adam’s apple, two broad bean-size of testicles and an
average size of the penis. No sperm was found in three
routine semen tests. Hormone test results were follow:
Testosterone: 1.75 ng/mL(reference value range(RVR):
2.80-8.00), progesterone: 0.11 ng/mL(RVR: 0.20-1.40),
prolactin: 208.44ulU/mL(RVR: 86.00-324.00), estradiol:
5.00 pg/mL(RVR:27.10-52.20), luteinizing hormone:
29.32mIU/mL(RVR: 1.70-8.60), follicle-stimulating hor-
mone 37.88mIU/mL(RVR: 1.50-12.40). The patient had
no siblings and denied family history. His parents are
not consanguineous, had no abnormal phenotype, and
refused the laboratory testing and physical examination.

Specimen preparation and DNA extraction

5 mL of venous blood was collected from patients with
heparin sodium and EDTA-Na, anticoagulant tubes,
respectively, and ready for use. According to the manu-
facturer’s protocols, genomic DNA was extracted from
EDTA-Na, anticoagulated blood using QIAamp DNA
Mini Kit (QIAGEN Company). DNA was qualified
when the concentration was more than 30 ng/uL, the
0OD260/280 value between 1.8 to 2.0 determined by ultra-
violet spectrophotometer Nanodrop 1C (Thermo Fisher
Scientific).

Chromosome karyotype analysis

Lymphocytes of heparin sodium anticoagulated blood
were cultured, harvested, and prepared for microscope
slides before Giemsa staining according to conventional
cell culture methods. Zeiss karyotype analysis system
(Karl Zeiss, Germany) was adopted for chromosome
count and karyotype analysis, the same as previous stud-
ies [13].
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Azoospermia factor (AZF) detection

Multiplex amplified was performed with AZF detection
kit (Yaneng corp.), then 2.0% agarose electrophoresis and
imaging, according to manufacturer’s instructions.

Short tandem repetition(STR) analysis

STR sites were performed by multiplex fluorescence
quantitative PCR amplification with Devyser compact
v3 kit (Devyser AB, Sweden). The amplification condi-
tion was 95 °C for 15 min; 94 °C 30 s, 58 °C 1 min 30 s,
72 °C 1 min 30s, 27 cycles;72 °C for 30 min. The amplified
products were subjected to capillary electrophoresis with
AB 3500Dx gene analyzer, and the electrophoresis data
were analyzed by GeneMapper software. The fluores-
cence peaks of AMELX in Xp22.2, AMELY in Yp11.2 and
SRY in Ypl1.31 were used to evaluate the patient’s sex
chromosomes. The experimental method was referred to
in the previous report [14].

Fluorescence in situ hybridization (FISH) analysis
Lymphocytes in EDTA-Na2 anticoagulant blood were
isolated by lymphocyte separation solution and hybrid-
ized by CSP 18/CSP X/CSP Y probe (Jin Pujia corp.),
using the same method as previously reported [15].
Meanwhile, the metaphase cells harvested from lympho-
cyte culture were co-hybridized with CSP X/CSP Y probe
(Jinpuga Company) and SRY probe (Abbott Company).
The MIX-1 was prepared by SRY hybridization buffer and
SRY probe at a ratio of 9:1, and the MIX-2 was made with
CSP hybridization buffer and CSP X/CSP Y centromeric
probe at a ratio of 4:1, and then added the MIX-1 and
MIX-2 to the metaphase cells loaded on the glass slide.
The Glass slide was denaturated at 78 °C for 10 min and
hybridized at 42 “C for more than 16 h. Refer to reagent
instruction for the experimental operation. A fluores-
cence microscope observed the fluorescence signal of
hybridization.

Chromosomal microarray analysis (CMA) analysis

500-1000 ng of patient DNA and the equivalent amount
of reference DNA was taken for simultaneous experi-
ments. After digestion, the labelled patient sample was
mixed with the reference sample and co-hybridized to
SurePrint G3 CGH+ SNP (180 K) chip. Agilent DNA
Microarray Scanner was used to scan the fluorescence
signals after the slides were washed. Agilent Feature
Extraction Software extracted the data from the images(.
tif) and converted it to log-ratios data. Agilent CytoG-
enomics software was used to analyze CNV. Agilent
Technologies provide the reagents, chips, instruments
and analytical software. Refer to the instructions for spe-
cific methods. CMA analysis mainly adopts some online
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databases such as OMIM (https://omim.org/), DGV
(http://dgv.tcag.ca/dgv/), Decipher (https://decipher.
sanger.ac.uk/), ClinGen (https://wwW.clinicalgenome.
org/), ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/).

Whole genome analysis (WGA) analysis

Mlumina HiSeq PE150 high-throughput dual-terminal
sequencing was performed after random interruption
into tiny fragments of DNA, terminal repair, phosphoryl-
ation, a-tail addition, connector and library construction.
Quality control was carried out on the raw sequencing
data to obtain high-quality clean data; Then, fastp soft-
ware [16] was used for comparative analysis of clean data
and human reference genome sequence, and data such as
sequencing depth and coverage of the target region were
counted and obtained Bam files. Finally, SNP/InDel was
detected and annotated based on Bam files to obtain all
mutation information. The Haplotyper tool of Sentieo
software [17] was used to detect SNP and InDel muta-
tion, and ANNOVAR software [18] was used to annotate
the mutation results accompanied by multiple databases
(such as dbSNP, 1000G, ESP6500, HGMD, OMIM).
Meanwhile, CNVkit software was used to analyze CNV
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X chromosome inactivation detection

The sample DNA of undigested and digested by Hpall,
which methylation-sensitive restriction enzyme, was
amplified by androgen receptor (AR) gene-specific prim-
ers and capillary electrophoresis subsequently. B2M was
used as the reference gene, and the digestion proceeded
overnight in a 37 ‘C water bath. Multiplex PCR amplified
the samples before and after enzyme digestion, respec-
tively. As reported in the literature [20], FAM fluorescein
was added to the 5 ’end of the forward primer [21]. PCR
reaction conditions followed: 95 ‘C for 5 min; 28 cycles
of 95 °C for 45 s, 58 °C for 30 s, 72 °C for 30 s; 72 °C for
7 min. PCR products were subjected to capillary electro-
phoresis. XCI ratio was calculated according to formula
(d1/ul)/(d1/ul +d2/u2), and XCI bias was confirmed if
the XCI ratio >70% [22, 23].

Results
Result of cytogenetic analysis
The patient’s karyotype was 46,XX, as shown in Fig. 1.

Result of AZF detection

The electrophoresis result of the patient showed neither
SRY nor AZF bands (including sY84 and sY86 of AZFa,
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Fig. 1 Chromosome karyotype of the patient. The sex chromosomes of the patient are two X chromosomes, as the arrow indicated
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sY127 and sY134 of AZFb, sY254 and sY255 of AZFc)
(The electrophoregram did not show).

Result of STR analysis

The STR result of the patient showed a fluorescence peak
of AMELX but not that of the AMELY and SRY, as shown
in Fig. 2.

Result of FISH analysis

FISH result of interphase cells hybridized by CSP 18/CSP
X/CSP Y probes showed two 18 and two X fluorescence
signals but no Y signal, as shown in Fig. 3a. Another
FISH result of metaphase cells hybridized with CSP X/
CSP Y/SRY probes showed two green signals of X chro-
mosome centromere, but not that of SRY and Y chromo-
some, as shown in Fig. 3b.
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Results of Y chromosome chimerism analysis

A single Y chromosome was not found in 200 cells in kar-
yotype analysis. Moreover, Neither AMELY and SRY fluo-
rescence peaks were detected in the STR analysis results,
nor Y chromosome and SRY fluorescence signals were
shown in the FISH result. A comprehensive evaluation
of the above detection results showed no Y chromosome
chimerism in the patient’s peripheral blood.

Results of CMA analysis

Taking 46,XX female genomes as a standard refer-
ence, the patients Xq27.1 (hgl9: chrX: 138,612,879—
139,480,163 bp) had about 867 Kb of heterozygotic
deletion, and the deletion region was located at 104 Kb
downstream of the SOX3 gene, including F9, CXorf66,
MCF2, ATP11C four protein-coding genes, as shown in
Fig. 4a and b.
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Fig. 2 Capillary electrophoresis diagram of STR of the 46,XX (SRY-) male patient. The STR result of the patient showed a fluorescence peak of AMELX
but not that of AMELY and SRY. The AMELX, AMELY and SRY represent the loci of Xp22.2,Yp11.2 and Yp11.31, respectively. The solid arrow indicated a
fluorescence peak of a specific amplicon, while the hollow arrow indicated no
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Fig. 3 a FISH image of interphase cells of the patient detected with the CSP 18, CSP X, and CSP Y probes. The blue signal represented chromosome
18, while the green represented chromosome X, as indicated by the arrows. b FISH image of metaphase cells of the patient hybridized with the CSP
X, CSPY and SRY probes. The green represented chromosome X, as indicated by the arrows
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Fig. 4 a CMA results of the 46,XX (SRY-) male patient. There was about 867 kb heterozygous deletion in Xg27.1 (hg19: chrX: 138,612,879~
139,480,163 bp), as the line indicated. b Schematic diagram of deletion region of the 46,XX (SRY-) male patient. The deletion region (hg19: chrX:
138,612,879-139,480,163 bp) is located at 104 kb downstream of the SOX3 gene in Xg27.1. The dotted line indicated the deletion region of 867 kb
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Results of WGA analysis

The WGA results showed no pathogenic or likely patho-
genic SNV&InDel variant related to sexual development,
which can clearly explain the patient phenotype; mean-
while, the results also showed about 892 kb heterozy-
gous deletion (hgl9: chrX: 138,609,392-139,501,392) in
Xq27.1.

Results of XCl analysis

The XCI ratio of the patient was about 75% (as shown in
Fig. 5), which indicated he had a non-random inactiva-
tion of the X chromosome.

Comparison of the clinical phenotypes of 46,XX
SRY-negative male patients with CNV of SOX3

Table 1 summarises the clinical features of 46,XX males
with SRY-negative individuals involved in the CNV of
SOX3. The patients all had the typical male appearance
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and showed common abnormal phenotypes, including
spermatogenous testicular dysplasia, because they were
absent from the entire Y chromosome. Among the seven
patients, five patients (case 1, 3, 4, 5, 6) had microdu-
plications spanning the entire SOX3 gene, another two
patients, including case 2 and our patient, had micro-
deletions near the SOX3 gene, which were speculated to
play a regulatory role for SOX3 expression. Our patient
showed a CNV near the SOX3 gene in CMA, and WGA
ruled out other SNV&InDel mutations associated with
sex determination and development. Meanwhile, he had
a skewed X chromosome inactivation, which was not
inconsistent with case 1.

Discussion

The SRY gene is recognized as the best TDF candidate
gene. As long as the SRY gene exists in the individual’s
genome, male gonadal development will occur even
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Fig. 5 The X chromosome inactivation results of the 46,XX (SRY-) male patient. The ordinate and abscissa represent fluorescence intensity and
fragment length. The figures near the fluorescence peaks indicate the height of fluorescence peaks. The black arrow indicates the amplified

products of the reference gene. After complete digestion, there is no amplified products peak (as shown below). The red and green arrows indicate
the two alleles of the AR gene in the X chromosomes. X chromosome inactivation ratio was calculated according to the formula (d1/u1)/(d1/
ul+4d2/u2)*100%. This patient’s X chromosome inactivation ratio was about 75%, which was non-random. d1: the height of the higher peak after
enzyme digestion, ul: the height of the undigested peak, which corresponds to d1; d2: the height of the shorter peak after digestion; u2: the height
of the undigested peak, which corresponds to d2
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without the Y chromosome; this is the primary mecha-
nism of 46,XX(SRY+) male pathogenesis. Therefore,
we should pay more attention to the Y chromosome
chimerism in 46,XX(SRY-) males and rule out as much
as possible. The Y chromosome was not found in our
patient’s peripheral blood derived from the mesoderm
through several experimental analyses. However, the
possibility of hidden Y chromosome mosaicism in other
tissues developed from the endoderm or ectoderm can-
not be excluded completely. Of course, it is not easy to
find that mosaicism exists in the gonad tissue due to its
unavailability.

The rearrangement of the SOX3 gene has confirmed
the causes of some 46,XX(SRY-) male individuals in pre-
vious reports [12, 24]. SOX3 gene is one of 20 SOX(SRY-
related HMG-box) gene family members. Stevanovic
et al. cloned the SOX3 gene and identified its location
at Xq27.1 in 1993 [25]. Its sequence is highly conserved
among different species. The SOX3 gene is ancestral to
the SRY gene [12, 26], so it has high homology with SRY
and other SOX family genes. SOX3 gene consists of a sin-
gle exon and contains an HMG box, encoding 446 amino
acids of a transcription factor sox3 protein expressed
in vertebrate embryos’ central nervous system [27]; it
plays a vital role in the pituitary, craniofacial and adrenal
development. The variation of the SOX3 gene is associ-
ated with X-linked mental retardation, growth hormone
deficiency, X-linked hypothyroidism, 46,XX male sex
reversal, and other diseases [12, 28-31].

Loss-of-function of SOX3 gene mutation did not
cause the abnormality of sex determination in mice and
humans [32]. However, studies in transgenic mice had
shown that in-situ expression of SOX3 in bipotent gonads
resulted in up-regulation of Sox9 expression, testicu-
lar induction and XX male sex reversal. Moalem S et al.
provided evidence of the duplication of the SOX3 in XX
bipotent gonads causing the acquisition of the SOX3
function [33], which was related to partial testis differ-
entiation in XX mice lacking the SRY gene. Moreover,
overexpression of SOX3, synergistically expression with
SF1, up-regulated SOX9 stimulated gonad development
into testis in XX mice [12]. The SRY gene was derived
from regulatory region mutation of the SOX3 gene and
expressed in the early gonad. The data of transgenic mice
indicated that SOX3 and SRY were interchangeable in sex
determination function.

The variation types of the SOX3 gene associated with
46,XX males were all the CNV in previous reports. To
date, 6 cases of 46,XX males related to the SOX3 CNV
have been reported. In some cases, the copy number
duplication of the SOX3 gene resulted in changing gene
product dose [33-35]; among other cases, it was specu-
lated that the CNV had a position effect on the SOX3
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gene expression because the CNV did not contain the
SOX3 gene but was only close to the region of the SOX3
gene, or the breakpoint of CNV fell in the regulatory
region of SOX3 [12, 36]. CMA showed that our patient
had a heterozygous deletion of about 867 kb in Xq27.1
(hgl9: chrX: 138,612,879-139,480,163 bp), which
was located at 104 kb downstream of the SOX3 gene,
including F9, CXorf66, MCF2 and ATP11C; Meanwhile,
whole-genome sequencing also found an 892 kb hete-
rozygosity deletion in Xq27.1 (hgl9: chrX: 138,609,392—
139,501,392), and no SNV&InDel mutation associated
with abnormal sex determination and development. No
similar report was found in the DGV database about
this deletion area, and no sexual reversal phenotype was
reported in Decipher and ClinVar databases. Similar to
previous reports [12, 34], we speculated that the dele-
tion region might involve the regulation region of the
SOX3 gene, leading to determination and differentiation
of male testis through weakening inhibition of SOX3 and
increasing expression SOX3 [12, 24, 35].

Similar to the two adults patients reported by Sutton
E et al. [12], the main features of our patient are azoo-
spermia and infertility [37] because of a deletion of the
entire Y chromosome. Microspermatocentesis is not rec-
ommended for this patient because his testis produces no
sperm, and the plan of donated sperm was introduced to
him.

Since the deletion of our patient existed in the X
chromosome, the XCI factor affecting the clinical sig-
nificance should be considered. The XCI is a dose-
compensation mechanism in XX individuals. It usually
occurs in early embryonic development as one of the
X chromosomes in a woman is inactivated, with only
one paternal or maternal chromosome being expressed
in each cell of the female individual. In general, XCI is
random, i.e., the inactivation ratio of the two X chro-
mosomes in females is 50%: 50% [38]. In 46,XX (SRY+)
males, some studies [21, 39] showed a high degree of
XCI bias (greater than 90%). Their phenotype differed
with the variable inactivation of the X chromosome
carrying the SRY gene [40, 41]. Here, we conducted
the XCI analysis of the peripheral blood in 46,XX
male(SRY-) patient for the first time. The XCI ratio
was about 75%, a moderate XCI bias. We speculate
that the expression of positive selection of the deficient
X chromosomes, which contained the deleted frag-
ment, results in the development of male gonads of the
patient, similar to previous reports [42]. The XCI ratio
of gonads tissues may differ from peripheral blood [22].
However, it cannot be accurately known because the
sample is inaccessible. We could not know the origin
of the Xq27.1 microdeletion in the downstream region
of the SOX3 gene of the patient because the relevant
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results of the patient’s parents were not available. We
have a tentative assumption that the CNV might reg-
ulate the SOX3 gene expression, thus leading to the
patient with a karyotype of 46,XX SRY-negative devel-
oping into a male. The pathogenicity of CNV has not
been confirmed, and this is our upcoming research task
to be performed.

At present, the pathogenesis of SRY positive 46,XX
male patients is relatively straightforward. However,
for SRY negative 46,XX male, the molecular mecha-
nism, signalling pathway, and genetic regulation are
remain unknown, and the diagnosis and treatment
are still relatively complex. Sutton et al. [12] identi-
fied three arrangements containing or adjacent to the
SOX3 gene, accounting for 19% (3/16) in 16 SRY-neg-
ative 46,XX male patients. Subsequently, several case
reports indicated that SOX3 was a critical pathogenic
factor of these patients. Therefore, it is crucial to con-
duct the CNV determination of the SOX3 gene in all
46,XX(SRY-) males. It is noteworthy that the current
and reported SOX3 duplications or deletions are below
the detection threshold of conventional karyotype and
can be found using CMA. Therefore, CMA analysis
is routinely recommended to the CNV of SOX3, and
high-throughput sequencing such as WGA can simul-
taneously proceed to exclude other SNV/INDEL muta-
tions. In addition, the XCI analysis of these patients
also should be considered.
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