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Abstract 

Background:  Turner’s syndrome is associated with either monosomy or a wide spectrum of structural rearrange-
ments of chromosome X. Despite the interest in studying (somatic) chromosomal mosaicism, Turner’s syndrome 
mosaicism (TSM) remains to be fully described. This is especially true for the analysis of TSM in clinical cohorts (e.g. 
cohorts of individuals with neurodevelopmental disorders). Here, we present the results of studying TSM in a large 
cohort of girls with neurodevelopmental disorders and a hypothesis highlighting the diagnostic and prognostic value.

Results:  Turner’s syndrome-associated karyotypes were revealed in 111 (2.8%) of 4021 girls. Regular Turner’s syn-
drome-associated karyotypes were detected in 35 girls (0.9%). TSM was uncovered in 76 girls (1.9%). TSM manifested 
as mosaic aneuploidy (45,X/46,XX; 45,X/47,XXX/46,XX; 45,X/47,XXX) affected 47 girls (1.2%). Supernumerary marker 
chromosomes derived from chromosome X have been identified in 11 girls with TSM (0.3%). Isochromosomes iX(q) 
was found in 12 cases (0.3%); one case was non-mosaic. TSM associated with ring chromosomes was revealed in 5 
girls (0.1%).

Conclusion:  The present cohort study provides data on the involvement of TSM in neurodevelopmental disorders 
among females. Thus, TSM may be an element of pathogenic cascades in brain diseases (i.e. neurodegenerative and 
psychiatric disorders). Our data allowed us to propose a hypothesis concerning ontogenetic variability of TSM levels. 
Accordingly, it appears that molecular cytogenetic monitoring of TSM, which is a likely risk factor/biomarker for adult-
onset multifactorial diseases, is required.
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Background
Since the beginning of the last century, Turner’s syn-
drome has been systematically described in clinical and 
cytogenetic aspects [1–3]; the syndrome is occasionally 

designated as Shereshevsky-Turner syndrome in Rus-
sia and as Ullrich-Turner syndrome in Germany [1, 3]. 
This chromosomal disorder may result from mono-
somy of chromosome X (loss of whole chromosome X), 
mosaicism for X chromosome aneuploidy/loss and X 
chromosome aberrations, or structural rearrangements 
of X chromosome leading to a loss of syndrome-spe-
cific X chromosome loci [4, 5]. It is generally accepted 
that ~ 45% of Turner’s syndrome cases are associated 
with non-mosaic monosomy of chromosome X. The 
remainder is associated with mosaic aberrations of 
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chromosome X (e.g. monosomy/disomy; monosomy/
trisomy; monosomy/marker chromosome; monosomy/
structural rearrangement(s); monosomy/isochromo-
some; monosomy/ring chromosome) in 20–35% of cases 
and with X chromosome rearrangements (isochromo-
some Xq, deletions of Xp and other exclusive rearrange-
ments) in 10–35% of cases [5, 6]. Furthermore, mosaic 
X chromosome loss is repeatedly shown to be a possible 
element of pathogenic cascades in a variety of multifac-
torial diseases including brain (neurodevelopmental) 
disorders [7]. According to the available literature, there 
have been significant efforts for uncovering genotype–
phenotype correlations in cohorts of females suffering 
from Turner’s syndrome with special attention to mosaic 
cases [6, 8–11]. However, Turner’s syndrome mosaicism 
(TSM) is usually ignored as a target in molecular (cyto)
genetic analyses of neurodevelopmental (neurobehavio-
ral) cohorts. Thus, TSM has been occasionally addressed 
in the context of neurodevelopmental disorders and 
molecular cytogenetic analysis of TSM in related clinical 
cohorts.

Here, we describe the study of TSM in a large cohort of 
girls with neurodevelopmental disorders and congenital 
anomalies by molecular cytogenetic techniques. Karyo-
typic and clinical data have been taken into account for 
understanding possible phenotypic outcomes of TSM. 
A hypothesis concerning ontogenetic instability of TSM 
suggesting diagnostic and prognostic significance of the 
analysis has been accordingly proposed.

Materials and methods
Patients
The cohort of girls with neurodevelopmental disor-
ders (intellectual disability, autism and/or epilepsy) and 
congenital anomalies included 4021 individuals. The 
ages ranged between 4 months and 18 years. Molecular 
cytogenetic and molecular studies of the cohort were 
approved by the Ethics Committee of the Veltischev 
Research and Clinical Institute for Pediatrics of the Piro-
gov Russian National Research Medical University, Min-
istry of Health of Russian Federation, Moscow. Written 
informed consent was obtained from the parents of the 
patients.

Cytogenetic analysis
Karyotyping by G- and C-banding was performed for all 
the girls from the cohort as detailed previously [12–14]. 
G-banding resolution was no less than 550 bands accord-
ing to ISCN 2016 [15].

FISH
Somatic chromosomal mosaicism was evaluated 
using fluorescence in  situ hybridization (FISH) with 

chromosome-enumeration and site-specific DNA 
probes. X-chromosome-specific probe (DXZ1) was 
used in all the cases suggested to be affected by X chro-
mosome monosomy (mosaic and non-mosaic). Site-
specific DNA probes for the short arm and long arm of 
chromosome X (structural rearrangements) and chro-
mosome-enumeration DNA probes for autosomes and 
chromosome Y (marker chromosomes and controlling 
during analysis of low-level mosaicism for rearrange-
ments of chromosome X) were applied when needed. 
DNA probe labeling, in situ hybridization and detection 
was performed according to previously described pro-
tocols [16, 17]. Interphase FISH analysis was performed 
as repeatedly described in details [18–21]. Quantitative 
FISH was applied to metaphase plates and/or interphase 
nuclei for increasing the efficiency of scoring. The details 
of the analysis were previously described [19].

SNP‑array
SNP-array-analysis (molecular karyotyping) using CytoS-
can HD Arrays (Affymetrix, Santa Clara, CA, USA) con-
sisting of about 2.7 million markers was performed as 
described earlier [22, 23]. Data were visualized using the 
Affymetrix ChAS (Chromosome Analysis Suite) software 
CytoScan® HD Array Version 4.1.0.90/r29400 (reference 
sequence—GRCh37/hg19).

Results
Cytogenetic and molecular cytogenetic analyses has 
identified Turner’s syndrome-associated karyotypes in 
111 (2.8%) out of 4021 girls with neurodevelopmen-
tal disorders and congenital anomalies. Regular (non-
mosaic) Turner’s syndrome-associated karyotypes have 
been detected in 35 girls (0.9% or 31.5% out of the whole 
group or girls with Turner’s syndrome-associated karyo-
types, respectively). Twenty seven individuals (24.3%) 
have exhibited regular 45,X karyotypes (Fig. 1), whereas 
8 patients (7.2%) have demonstrated structural rear-
rangements. TSM has been uncovered in 76 girls (1.9% or 
68.5% out of the whole group or out of girls with Turner’s 
syndrome-associated karyotypes, respectively).

Interphase FISH (Fig. 2) has confirmed all the mosaic 
cases of TSM. TSM manifested as mosaic aneuploidy (i.e. 
45,X/46,XX; 45,X/47,XXX/46,XX; or 45,X/47,XXX) has 
affected 47 girls (1.2%). Mosaicism levels varied from 5 
to 90%. The remaining cases have been associated with 
mosaic marker chromosomes, isochromosomes and ring 
chromosomes.

Supernumerary marker chromosomes have been 
identified in 11 girls with TSM (0.3%). Table 1 provides 
an overview of TSM cases with marker chromosomes. 
It is noteworthy that all the marker chromosomes have 
derived from chromosome X as uncovered by FISH with 
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Fig. 1  Molecular cytogenetic findings in a female with non-mosaic monosomy X; a FISH with a DXZ1 DNA probe (chromosome X, one green 
signal) and D1Z1 DNA probe (chromosomes 1, two red signals); b SNP-array results demonstrating non-mosaic X chromosome loss (regular 
monosomy X)

Fig. 2  Interphase FISH with DXZ1 and D1Z1 DNA probes (chromosome X/green signals and chromosomes 1/red signals, respectively); a case of 
monosomy/disomy mosaicism; b case of monosomy/disomy/trisomy mosaicism
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X chromosome-specific probes. Autosome and Y-chro-
mosome-specific probes have been also applied. Com-
plex supernumerary marker chromosomes and marker 
chromosomes derived from chromosomes other than 
chromosome X have not been detected.

Isochromosomes iX(q) (Fig.  3a) have been found in 
12 cases (0.3%). One case has been non-mosaic. All the 
remaining cases (n = 11) have demonstrated mosai-
cism. In 3 cases of mosaicism for iX(q), FISH analysis 
has revealed that isochromosomes are dicentric (Fig. 3b). 
Table 2 gives an overview of isochromosomes X detected 
in the present cohort. 

Ring chromosomes (Fig. 4) have been revealed in 5 girls 
(0.1%). All cases have been associated with chromosomal 
mosaicism. Table 3 provides an overview of ring chromo-
somes X that have been found in girls with neurodevel-
opmental disorders and congenital anomalies from the 
present cohort.

Clinically, all 111 girls with Turner’s syndrome-
associated karyotypes have demonstrated a range of 
neurodevelopmental phenotypes from minor neurobe-
havioral deficits to severe intellectual disability. Among 
other notable phenotypic features, we have observed 

short stature (n = 96; 86.5%), abnormal sexual develop-
ment (n = 84; 75.7%), pterygium colli (n = 83; 74.8%), car-
diac anomalies (n = 76; 68.5%) and renal abnormalities 
(n = 10; 9%). Karyotype-phenotype correlations (i.e. cor-
relations between mosaicism rates and phenotypic out-
comes) have not been established.

Discussion
Turner’s syndrome represents a common chromosomal 
(gonosomal) syndrome (newborn prevalence: 5.9/1000) 
[24]. So far, this is the sole syndrome associated with 
non-mosaic monosomy in human [5, 6]. However, it is 
systematically hypothesized that liveborn children with 
non-mosaic 45,X karyotype are tissue-specific mosaics 
[6, 25, 26]. Recently, analyses of multiple tissues repeat-
edly supported this idea [27]. Since mosaicism is an 
important biomarker in Turner’s syndrome, high atten-
tion is paid to mosaic cases. Moreover, studies of TSM 
in clinical cohorts are a broad area of medical genetic 
research. This may be explained by the fact that gonoso-
mal mosaicism is a phenomenon with global relevance 
to biomedicine [28]. Mostly, these studies are performed 
for cohorts of patients with reproductive problems or 

Table 1  Overview of TSM associated with supernumerary marker chromosomes

*  Cytogenetic analysis revealed cells with following karyotypes: 49,XXX,+mar,+mar; 48,XXX,+mar; 46,X,+mar; these karyotypes have not been detected by FISH

Chromosome abnormality Cell proportions (%) FISH results

45,X/46,X,+mar/46,XX 20/50/30 45,X.ishXp11.1q11.1(DXZ1×1)[10]/46,X,mar(X). ishXp11.1q11.1(DXZ1×2)[25] /46,XX.
ishXp11.1q11.1(DXZ1×2[15];

nuc ishXcen(DXZ1×1)[243]/(DXZ1×2)[757]

45,X/46,X,+mar 38/62 45,X.ishXp11.1q11.1(DXZ1×1)[19]/46,X,mar(X). ishXp11.1q11.1(DXZ1×2)[31];
nuc ishXcen(DXZ1×1)[341]/(DXZ1×2)[659]

45,X/46,X,+ mar 54/46 45,X.ishXp11.1q11.1(DXZ1×1)[27]/46,X,mar(X). ishXp11.1q11.1(DXZ1×2)[23];
nuc ishXcen(DXZ1×1)[483]/(DXZ1×2)[517]

45,X/46,X,+mar 52/48 45,X.ishXp11.1q11.1(DXZ1×1)[26]/46,X,mar(X). ishXp11.1q11.1(DXZ1×2)[24];
nuc ishXcen(DXZ1×1)[448]/ (DXZ1×2)[552]

45,X/47,XX,+mar/46,XX 32/22/46 45,X.ishXp11.1q11.1(pYAM10-40×1)[16]/47,XX,mar(X). ishXp11.1q11.1(DXZ1×3)
[11]/46,XX.ishXp11.1q11.1(DXZ1×2)[23];

nuc ishXcen(DXZ1×1)[389]/(DXZ1×3)[311]/(DXZ1×2)[300]

45,X/47,XXX/46,X,+mar* 38/42/20 47,XXX.ishXp11.1q11.1(DXZ1×3)[21]/45,X.ishXp11.1q11.1 (DXZ1×1)[19]/46,X,mar(X). 
ishXp11.1q11.1(pYAM1040×2)[10];

nuc ishXcen(DXZ1×3)[387]/(DXZ1×1)[303]/ (DXZ1×4)[110]/(DXZ1×2)[190]

45,X/46,X,+mar 72/28 45,X.ishXp11.1q11.1(DXZ1×1)[36]/46,X,mar(X).ish(DXZ1×2)[14];
nuc ishXcen(DXZ1×1)[387]/(DXZ1×2)[613]

45,X/46,X,+mar 52/48 46,X,mar(X).ishXp11.1q11.1(DXZ1×2)[26]/45,X.ishXp11.1q11.1 (DXZ1×1)[24];
nuc ishXcen(DXZ1×1)[477]/(DXZ1×2)[523]

45,X/46,X,+mar 38/62 45,X.ishXp11.1q11.1(DXZ1×1)[19]/46,X,mar(X). ishXp11.1q11.1(DXZ1×2)[31];
nuc ishXcen(DXZ1×1)[487]/(DXZ1×2)[513]

45,X/46,X,+mar 48/52 46,X,mar(X).ishXp11.1q11.1(DXZ1×2)[21]/45,X.ishXp11.1q11.1 (DXZ1×1)[19];
nuc ishXcen(DXZ1×1)[487]/(DXZ1×2)[513]

45,X/46,X,+mar/46,X,i(Xq)/47,XX,i(Xq) 30/26/24/20 45,X.ishXp11.1q11.1(DXZ1×1)[15]/46,X,mar(X).ishXp11.1q11.1(DXZ1×2)[13]/46,X,i(X)
(q10)(DXZ1×2)[12]/47,XX,i(X)(q10) (DXZ1×3)[10];

nuc ishXcen(DXZ1×1)[277]/(DXZ1×3)[200]/ (DXZ1×2)[523]

45,X/46,X,mar 26/74 45,X.ishXp11.1q11.1(DXZ1×1)[13]/46,XX.ishXp11.1q11.1(DXZ1×2)[37];
nuc ishXcen(DXZ1×1)[209]/(DXZ1×2)[791]
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for children without specific clinical features [8, 29–31]. 
Surprisingly, despite of the presence of neurobehavioral 
and psychiatric endophenotypes in the clinical picture 
of Turner’s syndrome, analyses of TSM are exclusive in 
neurodevelopmental cohorts [32, 33]. The present study 
fills this gap providing a comprehensive analysis of TSM 

among females with neurodevelopmental disorders. 
Thus, this mosaicism type is involved in 1.9% of cases 
among neurodevelopmental disorders, i.e. such a pheno-
typically variable group of patients.

Somatic gonosomal mosaicism manifesting as ane-
uploidy is a contributor to the pathogenesis of numerous 

Fig. 3  FISH on metaphase plates of a girl with an isochromosome X; a FISH with DXZ1 and D1Z1 DNA probes (chromosome X/green signals and 
chromosomes 1/red signals, respectively); note X chromosome loss in two interphase nuclei (left and upper right) indicating this case to be mosaic; 
b one-color FISH with DXZ1 DNA probe demonstrating isochromosome to be dicentric

Table 2  Overview of TSM associated with isochromosomes

Chromosome abnormality Cell proportions FISH results

45,X/46,X,i(Xq)/46,XX 60/30/10 45,X.ishXp11.1q11.1(DXZ1×1)[30]/46,X,i(X).ishXp11.1q11.1(DXZ1×2)[15]/ 46,XX. 
ishXp11.1q11.1(DXZ1×2)[5];

nuc ishXcen(DXZ1×1)[321]/(DXZ1×2)[679]

45,X/46,X,i(Xq)/46,XX 40/26/34 45,X.ishXp11.1q11.1(DXZ1×1)[20] /46,X,i(X).ishXp11.1q11.1(DXZ1×2)[13]/46,XX.
ishXp11.1q11.1(DXZ1×2)[17];

nuc ishXcen(DXZ1×1)[487]/(DXZ1×2)[513]

45,X/46,X,i(Xq) 32/68 46,X,i(X).ishXp11.1q11.1(DXZ1×2)[34]/45,X.ishXp11.1q11.1 (DXZ1×1)[16];
nuc ishXcen(DXZ1×1)[389]/(DXZ1×2)[211]

45,X/46,X,i(Xq) 74/26 45,X.ishXp11.1q11.1(DXZ1×1)[37]/46,X,i(X).ishXp11.1q11.1(DXZ1×2)[13];
nuc ishXcen(DXZ1×1)[717]/(DXZ1×2)[283]

45,X/46,X,i(Xq) 44/56 46,X,i(X).ishXp11.1q11.1(DXZ1×2)[28] /45,X.ishXp11.1q11.1(DXZ1×1)[22];
nuc ishXcen(DXZ1×1)[499]/(DXZ1×2)[501]

45,X/46,X,i(Xq) 36/64 46,X,i(X).ishXp11.1q11.1(DXZ1×2)[32]/45,X.ishXp11.1q11.1(DXZ1×1)[18];
nuc ishXcen(DXZ1×1)[214]/(DXZ1×2)[786]

45,X/46,X,idic(X)(q22.2) 24/76 46,X,idic(X).ishXp11.1q11.1(DXZ1×3)[38]/45,X.ishXp11.1q11.1(DXZ1×1)[12];
nuc ishXcen(DXZ1×3)[613]/(DXZ1×1)[387]

45,X/46,X,i(X)(q11.1) 43/57 46,X,i(X). ishXp11.1q11.1(DXZ1×2)[17]/45,X.ishXp11.1q11.1(DXZ1×1)[13];
nuc ishXcen(DXZ1×1)[413]/(DXZ1×2)[587]

45,X/46,X,idic(X)(p11.4)/ 46,XX 34/52/14 46,X,idic(X).ishXp11.1q11.1(DXZ1×3)[26]/45,X.ishXp11.1q11.1(DXZ1×1)[17]/46,XX. 
ishXp11.1q11.1(DXZ1×2)[7];

nuc ishXcen(DXZ1×1)[389]/(DXZ1×3)[300]/ (DXZ1×2)[211]

45,X/46,X,idic(X)(p11.3) 32/68 46,X,idic(X).ishXp11.1q11.1(DXZ1×3)[34]/45,X.ishXp11.1q11.1(DXZ1×1)[16];
nuc ishXcen(DXZ1×3)[623]/(DXZ1×1)[377]

45,X/46,X, + mar/46,X,i(Xq)/47,XX,i(Xq) 30/26/24/20 45,X.ishXp11.1q11.1(DXZ1×1)[15]/46,X,mar(X).ishXp11.1q11.1(DXZ1×2)[13]/46,X,i(X)(q10)
(DXZ1×2)[12]/47,XX,i(X)(q10)(DXZ1×3)[10];

nuc ishXcen(DXZ1×1)[277]/(DXZ1×3)[200]/(DXZ1×2)[523]
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diseases [7, 34–37]. Here, we have shown that 1.2% of 
females with neurodevelopmental disorders are affected 
by mosaic X chromosome loss alone. Therefore, one can 
suggest that mosaicism for monosomy of chromosome X 
is a highly probable and relatively common mechanism of 
brain diseases in females. Supernumerary marker chro-
mosomes derived from gonosomes have extremely vari-
able phenotypic outcomes from asymptomatic carriage 
to irritant medical problems [38, 39]. Current report sug-
gests that mosaicism for X chromosome loss and super-
numerary marker chromosome X may be involved in 
pathogenesis of neurodevelopmental disorders in 0.3% 
of cases. TSM for X chromosome loss and isochromo-
somes X is suggested to have similar contribution to 
pathogenesis of neurodevelopmental disorders as TSM 
for supernumerary marker chromosomes X. TSM for X 
chromosome loss and ring chromosomes X is likely to 
contribute to pathogenesis of neurodevelopmental dis-
orders in 0.1% of cases. The distribution of Turner’s syn-
drome-associated karyotypes among 111 girls is close to 

the results of the most comprehensive studies dedicated 
to the analysis of karyotypic heterogeneity in females 
with Turner’s syndrome [5, 6, 8, 10, 11]. However, accord-
ing to the database of marker chromosomes managed 
by Prof. Thomas Liehr (http://cs-tl.de/DB/CA/sSMC/0-
Start​.html), 465/715 of Turner syndrome cases with the 
marker chromosome are derived from chromosome Y 
and only 246/715 cases are derived from chromosome 
X. The potential discrepancy between marker chromo-
some database and the data of our study may be related 
to the differences of cohorts addressed. Here, we address 
the cohort with relatively unspecific phenotypes (i.e. neu-
rodevelopmental disorders and congenital anomalies), 
whereas marker chromosome database describes the dis-
tribution of derivative chromosomes among individuals 
with a specific phenotype (i.e. Turner’s syndrome). Alter-
natively, a more-or-less universal explanation referred to 
as the particularity of the cohort may be given. The lack 
of karyotype-phenotype correlations may be explained 
by unequal intertissular distribution of abnormal cells, 

Fig. 4  FISH with a DXZ1 DNA probe on metaphase plates of two girls with ring chromosome X (a, b); a note X chromosome loss in interphase 
nucleus indicating the case to be mosaic

Table 3  Overview of TSM associated with ring chromosomes

Chromosome abnormality Cell proportions FISH results

45,X/46,X,r(X)/46,XX 24/68/8 45,X.ishXp11.1q11.1(DXZ1×1)[12]/46,X,r(X).ishXp11.1q11.1(DXZ1×2)
[34]/46,XX. ishXp11.1q11.1(DXZ1×2)[4];

nuc ishXcen(DXZ1×1)[209]/(DXZ1×2)[791]

45,X/46,X,r(X)(p21q21) 43/57 46,X,r(X).ishXp11.1q11.1(DXZ1×2)[23]/45,X.ishXp11.1q11.1(DXZ1×1)[17];
nuc ishXcen(DXZ1×1)[289]/(DXZ1×2)[211]

45,X/46,X,r(X) 28/72 46,X,r(X).ishXp11.1q11.1(DXZ1×2)[36]/45,X.ishXp11.1q11.1(DXZ1×1)[14];
nuc ishXcen(DXZ1×1)[389]/(DXZ1×2)[411]

45,X/46,X,r(X) 36/64 46,X,r(X).ishXp11.1q11.1(DXZ1×2)[32]/45,X.ishXp11.1q11.1(DXZ1×1)[18];
nuc ishXcen(DXZ1×1)[550]/(DXZ1×2)[450]

45,X/46,X,r(X) 42/58 46,X,r(X).ishXp11.1q11.1(DXZ1×2)[29]/45,X.ishXp11.1q11.1(DXZ1×1)[21];
nuc ishXcen(DXZ1×1)[489]/(DXZ1×2)[511]

http://cs-tl.de/DB/CA/sSMC/0-Start.html
http://cs-tl.de/DB/CA/sSMC/0-Start.html
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which has been systematically reported previously [6–11, 
26, 27].

It is import to note that somatic chromosome abnor-
malities (aneuploidy and structural rearrangements) 
are ontogenetically instable. In other words, the rates 
of mosaicism may increase with age mediating aging-
related diseases and adverse aging effects [23, 40–44]. 
More importantly, X chromosome loss progresses dur-
ing aging and is considered as a cytogenetic biomarker 
of aging [45–47]. Therefore, it is highly likely that the 
amount of cells affected by X chromosome loss will 
increase during the lifespan of girls with TSM. In the 
neurodevelopmental context, it is important to mention 
the involvement of mosaic X chromosome monosomy in 
neuropsychiatric diseases. Thus, X chromosome loss is 
associated with a variety of neurobehavioral diseases in 
children, adolescents and adults including familial cases 
[13, 14, 48, 49]. Schizophrenia and comorbid psychiatric 
disorders are commonly associated with X chromosome 
aneuploidy, which may specifically affect the brain [21, 
50–52]. There are evidences for an involvement of aging-
related X chromosome loss in the pathogenesis of Alz-
heimer’s disease [53–55]. In total, it is to conclude that 
X chromosome loss accumulated throughout ontogeny 
represents a mechanism for brain diseases with different 
ages of onset [25, 56]. Additionally, X chromosome loss 
has been shown to be associated with numerous diseases 
characterized by female preponderance (e.g. autoimmune 
diseases), which we have reviewed recently [7]. There-
fore, unapparent phenotypic manifestations of TSM [57], 
should not be considered as a limitation for defining TSM 
as a biomarker for multifactorial diseases mediated by X 
chromosome aneuploidy. Furthermore, aging-related 
exhausting of molecular pathways guaranteeing chromo-
some stability and genetic-environmental interactions 
predispose to an increase in genome instability levels 
throughout ontogeny [23, 34, 58–62]. Moreover, chromo-
some abnormalities may initiate chromosome instability 
per se [23]. These observations allowed us to propose a 
hypothesis described below.

Hypothesis
We hypothesize that levels of TSM are likely to increase 
in different tissues throughout the lifespan. Accord-
ingly, this increase mediated by alterations to genome 
safeguarding pathways and genetic-environmental 
interactions would lead to occurrence of diseases asso-
ciated with X chromosome loss. Among these diseases 
are neurobehavioral disorders, schizophrenia, demen-
tia (e.g. Alzheimer’s disease) and autoimmune diseases. 
Taking into account social importance of these diseases, 
one may be aware about the application of TSM analysis 
for early (preclinical) diagnosis, prognosis and possible 

therapeutic interventions. In this context, we propose 
molecular cytogenetic monitoring of TSM for early 
detection of the increase of X chromosome loss levels 
throughout the life of the affected females. Additionally, 
system biology analyses of molecular and cellular path-
ways leading to the increase of X chromosome loss levels 
may offer a possibility to control/inhibit chromosomal 
mosaicism/instability. The combination of molecular 
cytogenetic monitoring and systems biology analysis of 
females with TSM would eventually lead to a possibil-
ity of successful evidence-based therapies of devastating 
multifactorial diseases.

Conclusions
The incidence of Turner’s syndrome-associated kar-
yotypes in girls with neurodevelopmental disorders 
achieves 2.8% (i.e. 20–30 in 1000 girls with intellectual 
disability, autism, epilepsy and/or congenital anoma-
lies). It is to note that more than two-thirds of these girls 
exhibit TSM. Significant karyotypic heterogeneity medi-
ated by TSM is observed in females with neurodevelop-
mental disorders. These data provide evidence for TSM 
contribution to the risk of brain diseases. Taking into 
account previous observations on somatic chromosomal 
mosaicism, we hypothesize that TSM proportions may 
ontogenetically change in favor of X chromosome loss. 
Thus, the occurrence of TSM might be a biomarker for 
adult-onset (multifactorial) diseases, which are medi-
ated by X chromosome loss in an appreciable propor-
tion  of cases. Consequently, detecting and monitoring 
TSM is important for early diagnosis, prognosis and evi-
dence-based therapeutic interventions in corresponding 
diseases.
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