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Abstract 

Background:  Breast cancer (BC), one of the most frequent human tumors, is genetically and histologically hetero-
geneous. Treatment options can be adapted according to BC subtype. Still, research is necessary to characterize BC 
biology better and to study potential new treatment options. Murine BC-cell lines can be used as model systems in 
this respect.

Results:  Here for the first time murine BC-cell line JC was cytogenomically characterized as being complex rear-
ranged and near-tetraploid. Multicolor banding and array comparative genomic hybridization were applied and 
the result was in silico translated to the human genome.

Conclusions:  Even though being commercially available, cell line JC was yet not much included in BC-research, most 
likely due to a lack of cytogenomic data. Thus, here comprehensive data is provided on chromosomal aberrations, 
genomic imbalances and involved breakpoints of JC cell line. Also JC could be characterized as a model for BC of 
luminal B type, basal-like tumor rather than for luminal A type.
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Introduction
Breast cancer (BC) is considered to be one of the most 
aggressive human cancer forms and is leading among 
cancer-related deaths, especially in females. Survival 
rates vary across countries depending on diagnostic regi-
mens, awareness of and possibilities to treat this disease 
[1, 2]. Factors like advanced age, low estrogen-levels, 
family history of cancer, and certain adverse gene muta-
tions, as well as lifestyle influence incidence of this cancer 
type [2, 3]. BCs are a heterogenic group of tumors, and 
thus divided into subtypes, according to their molecular 
profiles, morphology, and expression of specific biomark-
ers [4]. Therefore, each subtype has a different prognosis, 

a specific response to treatment and a defined clinical 
outcome [4, 5]. All these go together with repeatedly 
observed aggressive clinical courses and limitations in 
breast cancer treatment [6]. BC biomarkers include onco-
genes and tumor suppressor genes (TCGs), as well as 
their and related gene-products. Immunohistochemical 
markers for tumor cell surface or plasma, as well as for 
growth in this context are estrogen receptor, progester-
one receptor, human epidermal growth factor receptor-2 
(ERBB2/ HER-2) and epidermal growth factor receptor, 
cytokeratin 5 and/or nuclear protein Ki67 expression [1, 
7]. Based on such expression profiles BC can be classified 
in (1) luminal A-like, (2) luminal B-like (HER2-positive or 
HER2-negative), (3) HER2-overexpressing, and (4) triple-
negative subtypes [4, 7].

According to subtype, treatment regimens for BC are 
adapted [7, 8]. After initial surgery, being commonly 
applied for most BC subtypes chemo- and radio-thera-
peutic care follow, most of which have severe side effects. 
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Thus, new types of medication being targeted only 
towards BC cells are still a pressing necessity [9]. The lat-
ter can be e.g. approached by including animal, especially 
murine models, in research to study biological pathways 
of BC and BC progression [10–12]. Even though murine 
cell lines are applied in ample research, still most of 
them are not characterized in detail genetically [1]. This 
is also valid for the here studied BC cell line JC, which 
was established in 1978 from a murine BC, developing 
spontaneously in a 1.5  years old female BALB/c mouse 
[13]. JC-cells show papillary adenocarcinoma morphol-
ogy, and cytogenetics done in 1989 revealed only 26–100 
chromosomes per cell, and 40 per cell being found in 28 
of the 99 evaluated metaphases [14].

Molecular cytogenetics is considered the most practi-
cable technique to characterize genetic alteration in can-
cer [15]. Thus, here for the first time, the murine BC cell 
line JC was studied in detail by multicolor-fluorescence 
in situ hybridization (FISH) using all murine whole chro-
mosome painting (wcp) probes and FISH-based murine 
multicolor banding (mcb) approach together with array-
comparative genomic hybridization (aCGH). The in silico 
translation performed on the data to determine the cor-
responding homologous genetic alterations in human BC 
was done as previously described [16].

Materials and methods
Cell lines
The cell line JC was obtained from American Type Cul-
ture Collection (ATCCR CRL-2116™, Wesel, Germany). 
After being adherently grown in RPMI-1640 medium 
containing 10% fetal calf serum with recommended 
antibiotics, cells were cytogenetically prepared [17], and 
in parallel whole genomic DNA was extracted from the 
same passage of cells [16]. Molecular cytogenetic / FISH 
analyses (see below) on the cell line-derived chromo-
somes, and aCGH analyses on the extracted DNA (see 
below) were done. According to the ethical committee 
(medical faculty) and the Animal Experimentation Com-
mission of the Friedrich Schiller University, there are 
no ethical agreements necessary for studies involving 
murine tumor cell lines like JC.

Molecular cytogenetics
FISH was performed as previously described [16] using 
whole chromosome paints (“SkyPaintTM DNA Kit M-10 
for Mouse Chromosomes”, Applied Spectral Imaging, 
Edingen-Neckarhausen, Germany) for multicolor-FISH 
(mFISH), and murine chromosome-specific multicolor 
banding (mcb) probe mixes for FISH-banding [18]. 
At least 30 metaphases were documented and ana-
lyzed for each probe set (Zeiss Axioplan microscopy, 
equipped with ISIS software (MetaSystems, Altlussheim, 

Germany). Array-based comparative genomic hybridiza-
tion (aCGH) was done according to standard procedures 
by “SurePrint G3 Mouse CGH Microarray, 4 × 180  K” 
(Agilent Technologies) [16].

Data analysis
Imbalances and breakpoints being observed in JC were 
determined according to aCGH and mcb data, and 
aligned to human homologous regions using Ensembl 
and the UCSC Genome Browser, as previously described 
[19]. The obtained data were compared to genetic 
changes known from human BCs according to literature 
[7, 20–32].

Results
After wcp-based mFISH analyses, JC presented as rela-
tively stable, hypo-tetraploid cell line with 64-66 chro-
mosomes (result not shown). Overall there were 3 clones, 
which differed only in few alterations.

Clone 1 was considered as ancestor clone and 
present in ~17% of the analyzed cells; karyotype: 
64-66<4n>,XXX,-X,del(1)(E2),dic(2;9)(A1;A1),-3,-
4,del(5)(B),der(6)(:14B→14A1::6A1→6B3::6B3→6B
1::6B1→6B3::6B3→6B1::6B1→6B3::16C1→16qter),-
7,idic(8)(A1;A1),dic(9;13)(:13A5->13A5:::9A1→9q
ter),-10,-12,+13,-14,-16,-17,-18,-19.

Clone 2 (53.3%) was present in ~53% had the same 
karyotype shown in Fig.  1 as 64-66<4n>,idem,XX,-X,-
X,idem,t(3;14)(H4;D1),+6,+15,dup(17)(A2D1).

Clone 3 (~30% of the cells) had the karyotype:
64-66<4n>idem,XX,der(X)(X;?)(pter→A6::?),-X,t(3;14)
(H4;D1),+6,der(?)(?;11)(pter→A1::E1→qter),del(13)
(A5),dup(17)(A2D1),+15.

Overall, FISH-data was in agreement with the aCGH 
results and copy number alterations and breakpoints are 
summarized in Fig.  2a. An in-silico-translation of those 
results to the human genome (only imbalances larger 
than 3.5 megabase pairs were included) identified the 
corresponding homologous region in the human genome 
(Fig. 2b). Genomic details are given in Additional file 1: 
Table S1.

The corresponding homologous regions for the cell 
line were compared with common imbalances in human 
BC, and this revealed copy number variations in regions 
known to harbor oncogenes and tumor suppressor genes 
(TSG) with an overlap of 40% (Table 1). The breakpoints 
of the cell line compared with the chromosomal breaks of 
human BC overlap to 56% (Table 2). Genetic alterations 
in cell line JC correlated best with the subtype for human 
BC acc. to Horlings et al. [32] with basal-like (50%) and 
luminal B type tumors (67%); no correlation was found 
with human luminal A type BCs (Table 3).   
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Discussion
BC is one of most frequent tumors in females, genetically 
heterogeneous and with an often very aggressive course. 
Therefore, still basic research is necessary to under-
stand better its biology and to find more efficient treat-
ment strategies. Accordingly, especially murine tumor 
cell lines are favorite model systems to perform basic 
research studies, as well as such towards testing of new 
medications [8, 33]. Our group characterized already 
several murine tumor cell lines by the same test strategy 
as applied here, and thus delivered previously not avail-
able but urgently necessary genetic basic data, including 
chromosome numbers, observable breakpoints and copy 
number changes [1, 16, 17, 19, 34, 35]. Here a commer-
cially available murine BC-cell line was characterized 
for the first time, cell line JC, which was yet rarely used 
in research. It may be speculated that this was in major 
parts due to the fact that there was no genetic informa-
tion available, yet. This gap was closed by the present 
study now.

JC cell line presents a near-tetraploidy karyotype, 
which is typically observable, especially in human [36], 

however, only present in about 50% of murine tumor cell 
lines [1, 16, 17, 19, 34, 35]. Polyploidy promotes malig-
nant transformation of mammary cells and increases cell 
resistance to drugs [36]; still, it is also a known adapta-
tion of cells to cell culture conditions. In case of JC cell 
line the only available previous cytogenetic characteri-
zation dates back to 1989; at that stage the cell line was 
extremely chromosomally instable with chromosome 
numbers reported between 28 and 99. As ~  30% of the 
cells had modal chromosome numbers of 40 [14] it 
must be suggested that since that time a stabilization of 
the karyotype by tetraploidization took place. However, 
structurally rearranged chromosomes were not dupli-
cated, as observed in other tetraploid BC cell lines [1]. 
For observed copy number alterations gain of copy num-
bers was observed for MYC and loss of heterozygosity for 
tumor suppressor genes MSH2, PTEN and BRCA2 were 
determined here.

Overall, murine cell line JC can has here been geneti-
cally characterized and it could be shown to be suited 

Fig. 1  Murine multicolor banding (mcb) was applied on chromosomes of the JC cell line. This figure depicts the summary of 20 
chromosome-specific FISH-experiments as typical pseudocolor banding. Derivative chromosomes consisting of different chromosomes are 
highlighted by frames and shown twice or thrice in this summarizing karyogram



Page 4 of 8Azawi et al. Mol Cytogenet            (2021) 14:7 

Fig. 2  aCGH-results and copy number variations detected in cell line JC are summarized here with respect to a diploid-basic karyotype. Gains 
are shown as green bars and losses are red, and breaks are registered as arrows. a Imbalances found in the cell line depicted along a murine 
chromosome set. b Results translated and projected along the human chromosome set
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Table 1  Oncogenes and  tumor suppressor genes (TSG), 
related to  human BC [20, 21] and  their involvement 
in gains or loss of copy numbers in JC cell line

CNV copy number variant

Oncogenes and TSGs Gene loci in human JC

NRAS 1p13~22 no CNV

MSH2 2p22 loss

RAF1 3p25 no CNV

RARβ2 3p24 no CNV

MLH1 3p21 no CNV

APC 5q21 no CNV

MYB 6q22-q23 loss

IGFII-R 6q26 no CNV

MYC 8q24 gain

CDKN2A (p16INK4) 9p21 no CNV

PTEN 10q23 loss

HRAS 11p15.5 loss

FGF3 11q13 loss

CCND1 11q13 loss

ATM 11q22 no CNV

CDKN1B (p27kip1) 12p13 no CNV

KRAS2 12p12.1 no CNV

BRCA2 13q12 loss

Rb1 13q14 no CNV

CDH1 (E-cadherin) 16q22 no CNV

TP53 (p53) 17p13 no CNV

BRCA1 17q21 no CNV

ERBB2 17q21 no CNV

SERPINB5 (maspin) 18q21 loss

STK11 (LKB1) 19p13 loss

SUM of concordance in CNVs of potentially affected regions 10/25

Table 2  Breakpoints in  JC compared to  the  observed 
acquired breaks in  human BCs according to  the  literature 
[7, 20–32]: Concordances with  human breakpoints are 
highlighted in bold

Breakpoint acc. to human genome Human BC JC

1p33 + –

1q25.3 + –

2p23.3 – –
3p12.3 + –

4p12 – –
4q26 + –

4q31.23 + –

4q32.2 – –
5p14.2 + +
5q13.2 + +
5q14.3 + +
6q25.2 – –
7p14.1 – +
7q31.1 – –
7q36.2 – –
8q23.3 + +
8q24.22 + +
9p24.2 + –

9p21 + –

10p11.21 + –

10q25.1 – –
11p15.5 + –

12q12.1 + +
12q24.31 + –

13q21.2 + –

14q32 + –

16p12.3 – –
17q21 + +
Xp22.2 – –
Xq23.2 – –
SUM of concordance 17/30
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as a model for BC of luminal B type, basal-like tumor. It 
seems to be not suited as luminal A type BC model.

Supplementary information
The online version contains supplementary material available https​://doi.
org/10.1186/s1303​9-020-00524​-z.

Additional file 1: Table S1 The regions of gain and loss of copy numbers, 
as well of breakpoints of balanced rearrangements, observed in JC and 
the corresponding homologue regions in humans are listed as cytoband 
and position (GRCh37/hg19).
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