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Abstract

Background: Autism Spectrum Disorders (ASD) now encompass a broad heterogeneous group of people who
present in the early developmental years with a wide range of social and communication deficits, which are
typically also associated with complex repetitive behaviors and circumscribed interests.

The target goal is to heighten readers’ perception into the trend to personalize the distinct autistic and related

developmental conditions encompassing the 12p region.

Case Presentation: This is a case-report of a 4-year-old male who presented the core signs of ASD, which were
thought to be related to a rare 12p13.2 deletion. We further reviewed the literature in order to outline the related

developmental conditions in the 12p region.

Aside from this patient reported here, we found an additional number of 43 cases described in the medical literature
since 1974, that have been related to deletions in the 12p region. However, to the best of our knowledge, none of the

previous had been specifically linked to the 12p13.2 band.

Conclusions: The 12p deletion spectrum is rarely described as part of the selective genotypes thought to be related
to ASD. Even inside of a small piece of the puzzle, there might be ample variation in the behavioral and clinical
phenotypes of children and adults presenting with this particular genetic profile.

In that regard, the particular 12p13.2 distal deletion presentation is one of the possible genotypes encompassed
by the "12p deletion spectrum syndrome”, that might be potentially connected to the diagnosis of ASD and

related developmental disorders.
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Background

Autism Spectrum Disorders (ASD) now encompass a
broad heterogeneous group of people who present in the
early developmental years with a wide range of social
and communication deficits, which are typically also as-
sociated with complex repetitive behaviors and circum-
scribed interests [1].
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With the advent of genomic technologies, studies
have recently demonstrated that there is a strong
heritability in ASD, as well as a positive interplay
among genetic and environmental factors in the eti-
ology of social deficits and unusual behaviors [2, 3].
Moreover, a high (60 to 90 %) concordance rate in
monozygotic twins for ASD has been already deter-
mined [4].

The accumulation of these data overtime made a dis-
tinction between idiopathic (Non-syndromic) ASD and
syndromic ASD possible. From Mendelian inheritance to
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de novo SNV and CNV point mutations [2] many genes
are now believed to be implicated in the role of a neur-
onal molecular level activity [5]. These genes have also
accounted for the neurobiological changes in part of the
brain that affects social cognition, sensory perception
and executive function [1, 6].

The trend toward linking autistic phenotypic behaviors
to different genotypes is legitimate, but can be very
unreliable due to changes in behavioral phenotype and
developmental trajectories over time as individuals with
ASD grow older [7].

The rarely reported terminal 12p deletion zone
spectrum is a group of characteristic genotypes thought
to be associated with autistic core features among other
developmental, psychiatric, cancer predisposition and
clinical phenotypic presentations [8—11].

The first report on the so-called “12p deletion
spectrum” was published in 1975 by Magnelli and
Therman [12, 13].

For clinical understanding purpose, the 12p regions
can be divided into four group types according to the
site of the interstitial deletion: 12p1-11; distantly extend-
ing deletions 12p11-13, 12p13 band, and the distal zone
of 12p [14].

In this report, we present a new case of a 4-year-old
with ASD and a 12p13.2 deletion, and further discuss the
relationship of the condition to the phenotypic spectrum
of the 12p region, by illustrating examples taken from the
literature.

The target goal here is to heighten readers’ perception
into the trend to personalize the distinct autistic and re-
lated developmental conditions encompassing the 12p
region.

Methods
Patient recruitment
We recruited a 4-year-old boy diagnosed with develop-
mental arrest and ASD due to an underlying 12p deletion
for this report. Permission by the child’s mother has been
granted through an informed consent, which has been ap-
proved by the SARAH Network Institutional Research
Ethical Board under number 49915515.1.0000.0022.

A description of the case, as well as the results of
the patient’s diagnostic tests has been undertaken
below.

Review of the literature

We searched PubMed for all existent articles related to
interstitial and terminal deletions in the 12p region. The
terms 12p and autism were used for this search. Only
articles written in English, French and German were
considered for a review. Fifty-two relevant papers were
further completely appraised.
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Case Presentation

A 4-year-old male proband (Figs. 1, 2, 3) presented with
global developmental delay noticed by his family when
he was around 11 months of age. The child was born
at term from a vaginal delivery and an uneventful
pregnancy. His parents were non-consanguineous and
healthy. The mother disclosed she had consumed
alcohol for social purposes before being aware she was
pregnant. She reports having drunk small beverages of
beer during the week, as well as vodka throughout the
weekends, until the third month of gestational period.
The exact daily amount of alcohol consumption is un-
known. Despite the fact the mother had a small amount
of vaginal bleeding at 42 weeks of gestation, the child’s
Apgar scores were 8 in the first and fifth minutes. The
patient developed a mild, asymptomatic, hypoglycemia
due to suction difficulties, but he was discharged from
the hospital at day three of life and had been able to be
breastfed until 3 months of age only.

The child’s social and language skills were below the
rest of his developmental domains. He attained inde-
pendent walking by 23 months of age. Nevertheless, his
verbal and non-verbal communication capabilities were
so weak that, at that age, it was clearly observed that
the quality of his eye contact, as well as social interac-
tions, were in the autistic spectrum range. Moreover,
significant motor and vocal stereotypic behaviors
alongside difficulties in functional play and imitation
had also ensued. The child’s growth curves for weight
(centile 15-25), height (centile 15-25) and head cir-
cumference (centile 75) have been steadily unchanged
over the course of his growth. No facial or corporeal
dysmorphic features have been detected, that could be
specific for FAS, or any specific genetic syndrome. In
addition, there were no reports of clinical seizures in
this patient. His physical and neurological examina-
tions were unremarkable, except by the fact that he has
developed a refraction error visual impairment. He was

Fig. 1 Anterior view of patient’s face and body
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Fig. 2 Lateral view of patient’s face and body
A\

Fig. 3 Anterior view of patient’s face and body

Page 3 of 12

seen by an ophthalmologist who prescribed lenses
accordingly.

At 3 years old, a brain MRI, which was undertaken to
investigate the patient’s global developmental delays,
showed no signs of abnormal patterns in myelination or
in the setup of the structures comprising the supra and
infratentorial brain compartments. However, we identi-
fied sparse increased signal in FLAIR and T2-weighted
images in the white matter territories adjacent to the lat-
eral ventricles bodies and subcortical zones (Figs. 4, 5, 6,
7). In addition, around the same period of time, a v-EEG
demonstrated signs of a non-specific slow background,
but no other abnormal electrographic activity had been
identified (Fig. 8).

Fragile X DNA screening, as well as metabolic screen-
ing for Inborn Errors of Metabolism results, all came
back negative. Chromosome analysis was carried out
(please, see below).

In order to reinforce our thoughts on the diagnosis of
ASD related to the genotype found in this patient, we
revisited the ASD diagnosis at the patient’s age of 4 years,
according to the Childhood Autism Rating Scale (CARS)
[15]. The overall CARS score was 44, suggesting that the
child was in the severe range of the autistic spectrum.
This finding confirmed our primary developmental diag-
nosis of ASD, which has finally been aligned to the novel
DSMS5 criteria.

Data analysis

A high resolution G-banded chromosome analysis of
peripheral blood lymphocytes showed 46,XX,del(12-
p)(13.2) karyotype (550-600 GTW bands) in this
patient.

The 12p13.2 deletion has not been identified in the
parent’s karyotype, indicating a de novo terminal deletion
in the short arm of chromosome 12.

We also used OMIM database to scrutinize scientific
data related to all genes seated on the 12p13.2 region.
Then, we selected the genes that could potentially be re-
lated to one of the etiologies of ASD.

Review of the Literature

Aside from the present patient, we found an add-
itional number of 43 cases described in the medical
literature since 1974, that have been related to the
12p region. However, to the best of our knowledge,
none of the previous had been specifically linked to
the 12p13.2 band. All cases were summarized in
Table 1.

Discussion

In this report, we described a new case of a young male
child with initial global developmental delay which
turned out to become more specific of the typical core
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Fig. 4 Brain MRI - Increased signal in T2-weighted images in the
withe matter territories adjacent to the lateral ventricles bodies and
subcortical zone

signs that underpin the diagnosis of ASD, as the child
became a preschooler. These signs are characterized by
deficits in social and communication capabilities associ-
ated with repetitive behaviors and activities plus circum-
scribed interests [1].

According to recent analysis, it appears that there is a
growing body of evidence pointing toward an increasing
rate of ASD with a current average prevalence of 1 %
worldwide [16]. The higher rates of ASD might be the
by-product of a variety of factors, ranging from the
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Fig. 6 Brain MRI - Increased signal in FLAIR images in the withe
matter territories adjacent to the lateral ventricles bodies and
subcortical zone

heterogeneity in the diagnostic criteria and diagnostic
practice, to changes in the epigenetic factors [3, 17, 18].
When it comes to the genetic influences on the eti-
ology of ASD, one has to take into account the hetero-
geneity of genotypes, comprising roughly one thousand
genes or so, that have been associated with autism. Ac-
cording to Butler et al. [19], routine cytogenetic studies
typically identify abnormalities in chromosomes 2, 3, 4,
5,7, 8,11, 13, 15, 16, 17, 19, 22 and X. Those findings
include deletions, duplications, translocations and
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Fig. 5 Brain MRI - Increased signal in FLAIR images in the withe
matter territories adjacent to the lateral ventricles bodies and
subcortical zone
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Fig. 7 Brain MRI - Increased signal in FLAIR images in the withe
matter territories adjacent to the lateral ventricles bodies and
subcortical zone
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Fig. 8 EEG showing non specific slow background activity, as well as no epileptiform discharges
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inversions involving specific chromosome regions where
known candidate ASD genes are seated [19]. Noteworthy,
even considering the fact that this is an updated publica-
tion, the 12p deletion spectrum is still not mentioned as a
common site for genes related to ASD. Moreover, accord-
ing to McDonald et al. [20], aside from the gene-enriched
subtelomeric regions in these most common sites, 1p,
22q, 4p, 9q, 8p, 2q and 20p, respectively outlined here in
order of frequency, there have been only a few reports
involving the short arm of the chromosome 12. Table 1 il-
lustrates all patients with the interstitial and terminal 12p
deletions previously described since the first publications
in 1974.

In any case, our 4-year-old patient has a genetic setup
in 12p region that, to best of our knowledge, has not yet
distinctively been presented in the literature. That also
includes the fact that this patient lacked the variable
dysmorphic features frequently presented in the major-
ity of related papers as listed in Table 2. In addition, al-
though data on ASD was not available in many of the
outlined cases in Table 1, aside from the present child,
three of others displayed were described as having

ASD. Noteworthy, this child is the only one of the four
who did not display significant dysmorphic features.

On the other hand, there are other previously pub-
lished reports on sporadic ASD originated from an
NMDA-related gene, named GRIN2B, that is located in
12p13.1. However, those cases were related to point mu-
tations and translocations as opposed to deletions occa-
sionally found in the 12p region [21-23].

At this point, one might also inquire about some of the
risk factors for a brain injury this child had, such as, for
instance, antenatal exposure to alcohol and hypoglycemia
during the child’s initial hours of life. Indeed, according to
a recent meta-analysis from Tsang et al., the alcohol ex-
posure could partially be accounted for the appearance of
atypical behavioral, social and cognitive difficulties [24].
Moreover, the fact that the child did not present with the
FAS features does not rule out the broader, secondary
diagnosis of FASD, which comprises FAS, pFAS, ARND
and ARBD [25].

On the other hand, as there are no reliable biological
markers today to rule in or out FASD, we can only say
at this point that, taking into account the previously



Leyser et al. Molecular Cytogenetics (2016) 9:75

Table 1 Behavioral and clinical phenotypes in the 12p interstitial and distal deletion spectrum syndromes
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Cases Deleted segment ASD ID Other Dysmorphic features
Mayeda et al. 1974 [38] 12.13-pter NA + - +
Magnelli/Therman 1975 [39] 12p12-pter NA + - +
Teconi et al. 1975 [40] 12p NA - +PMD +
Malpuech et al. 1975 [52] 12p11-p12.2 NA - +PMD +
Orye & Craen 1975 (1) [41] 2p12 NA + +PMD +
Orye & Craen 1975 (2) [41] 2p12 NA - +PMD +
Magenis et al. 1981 [34] 12p12.3 NA +PMD +
B.-Dartigalongue et al. 1985 [42] 12p11-p12.1 NA +PMD +
Kivlin et al. 1985 [43] 12p12.2-pter NA - - +
Romain et al. 1987 [53] 12p13.1-133 NA + - +
Baroncini et al. 1990 [44] 12p13-pter NA - - +
Fryns et al. 1990 [45] 12p11.2-12p13.1 NA - +PMD +
Nagai et al. 1995 [54] 12p11.21-p12.2 NA + - +
Bahring et al. 1997 [55] 12p11.21-p12.2 NA - - +
Baker et al. 2002 (1) [46] 12p NA + +NS +
Baker et al. 2002 (2) [46] 12p NA - +PMD/LD NA
Glaser et al. 2003 [14] 12p12.1-p12.3 NA - +PMD +
Stumm et al. 2007 (1) [47] 12p11.21-p13.2 NA - -

Stumm et al. 2007 (2) [47] 12p11.21-p13.2 NA - - +
Velinov et al. 2008 [48] 12p13.3-pter NA + +NS -
Lu et al. 2009 [56] 12p11.21-12p12.2 NA _ +PMD +
Rooryck et al. 2009 [49] 12p13.33 NA NA +
McDonald et al. 2010 [20] 12p NA + +
Abdelmoity et al. 2011 (1) [50] 12p13.33 - - +ADHD/ID/SE +
Abdelmoity et al. 2011 (2) [50] 12p13.33 - - +ADHD/ID/SE -
Abdelmoity et al. 2011 (3) [50] 12p13.33 - - +PMD/LD NA
Talkowski et al. 2011 [58] 12p13.1 - + +Seizures NA
Soysal et al. 2011 [12] 12p11.1-12.1 NA + - +
De Ligt et al. 2012 [57] 12p13.1 - + +Language Delay NA
Dimassi et al. 2012 (1) [35] 12p13.1 - + +LD/PMD/Seizures

Dimassi et al. 2012 (2) [35] 12p13.1 - + +Language Delay

Dimassi et al. 2012 (3) [35] 12p13.1 + + +PMD/Language Delay

Thevenon et al. 2012 (1) [36] 12p13.33 - - +PMD/Language Delay

Thevenon et al. 2012 (2) [36] 12p13.33 - - +Language Delay NA
Thevenon et al. 2012 (3) [36] 12p13.33 + + +Language Delay/ADHD/LD +
Thevenon et al. 2012 (4) [36] 12p13.33 - - +Language Delay/ADHD -
Thevenon et al. 2012 (5) [36] 12p13.33 - + +ADHD/LD -
Thevenon et al. 2012 (6) [36] 12p13.33 + + +Language Delay/ADHD/LD +
Thevenon et al. 2012 (7) [36] 12p13.33 - + +PMD/Language Delay/ADHD/Anxiety +
Thevenon et al. 2012 (8) [36] 12p13.33 - + +PMD/Language Delay/ADHD/LD/Anxiety +
Thevenon et al. 2012 (9) [36] 12p13.33 - + +Language Delay/LD +
Vargas et al. 2012 [11] 12p13.33 NA D +PSY +
Hoppe et al. 2014 [13] 12.2p11.22 NA + +PMD +
Present Patient 12p13.2 + + +LD/PMD -

+Feature present; — Feature negative; LD learning disability, ADHD attention deficit hyperactivity disorder, ADD attention deficit disorder, ID intellectual disability,
PMD psychomotor delay, Psychosis PSY, SE staring episodes, NS non specific, NA not available
Ref. [11, 13, 20, 34-36, 38-40, 42-49, 51-58]
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Table 2 Frequent dysmorphic signs and associated congenital anomalies previously described in the 12p deletion syndrome

Head, face and neck Thorax and abdomen Genitals Miscellaneous

Stenosis of the sagittal sutura Asymmetric thorax Cryptorchidism Short stature

Broad and webbed neck Wide-set mamillae Hypoplasia of external genitalia Low body weight

Facial asymmetry/oval shape Hypoplastic lungs Inguinal hernia

Arched eyebrows Atrial septal defect Neurological Osteogenesis imperfecta
Down slanted palpebral fissures Low set umbilicus Microcephaly Stillborn

Short Palpebral fissures Multicystic dysplastic Kidneys Brachycephaly Turner like stigmata

Almond shape palpebral fissures
Epicanthic folds

Sclerocornea

Eyelid coloboma

Large, low set and hyperplastic ears,
posteriorly rotated ears Microtia/anotia
Large and flat nasal bridge

Long philtrum

Everted vermillion of the lowe lip
Cleft lip and palate

Hypoplastic mandible

Micrognathia

Vertebral anomalies

Extremities

Short upper arms

Cubitus valgus

Short hands Brachymetaphalangy
Clinodactyly/camptodactyly
Squared firngertips

Broad nails

Broad thumbs

Short metatarsal bones

Big overlapping toes with

Optical nerve atrophy
Sensorineural hearing loss
Spasticity

Presence of Babinsky sign
Increased deep tendon reflexes
Epilepsy

Muscle atrophy

Decreased LDHB activity
Sacro-coccygeal dimple

Broad chin

Hypoplastic teeth and enamel
Hyperplastic gengiva
Protunding tongue

hypoplastic nails
Transverse creases

LDHB Lactic Dehydrogenase B
Ref. [14, 34, 38, 39, 41-44, 47, 48]

described literature on the relationship between ASD
and the 12p deletion spectrum, the former might well be
at least partially considered as the causative factor for
this child's ASD diagnosis. Furthermore, the patient’s
brain MRI findings are non-specific and the increased
signal in FLAIR and T2-weighted images might most
likely be related to zones of terminal myelination, rather
than a lesion caused by alcohol and/or the minor asymp-
tomatic neonatal hypoglycemic episode.

We acknowledge there is a technical limitation in our
report due to the lack of specific laboratory expertise
and materials. We have not been able to pursue further
investigations in this child using more sophisticated
techniques, such as the aCGH arrays. This hampered
our understanding in which genes were missing in the
12p13.2 of our affected patient.

Nevertheless, when looking up into the 12p13.2 region
on the OMIM database, we were able to identify relevant
genes related to Homo sapiens (human) species, as out-
lined in Table 3.

If one takes into account the theoretical factors
(synaptogenesis, synaptic connectivity, dendritic spines
formation and maintenance, neuronal membrane pro-
tein turnover and related neurotransmitters metabol-
ism, as well as immunological issues) related to the
pathogenesis of ASD, from the genes directly linked
to humans, as enlisted in Table 3, one finds it important
to observe that TNFRSFIA [26], LRP6 [9, 27], CLEC7A
[28], GABARAPLI [29], CLECIB [30], STYKI [31],
CLECI2A [32], CLECI1A [33], MAGOHB [34], could be po-
tentially involved in the pathogenesis of ASD, due to their
anti-inflammatory, immunologic and neuro trafficking

roles. However, given our limitation to further assess these
data, more extensive and in-depth research is needed in
that regard.

Below we describe some of the already known variations
of clinical presentation in the 12p deletion spectrum that
might be related to ASD.

The 12p11.1-p12.1 interstitial deletion

In the report of Soysal et al. [12], a very distinctive pheno-
type is observed in a 12 years old girl with a karyotype
46,XX, del(12)(p11.1-p12.1). This patient, born from a
young unrelated couple with an unremarkable family his-
tory, presented with dysmorphic craniofacial features
(microcephaly, ocular hypertelorism, down-slanting palpe-
bral fissures, strabismus, myopia, minor inner epicantal
folds, arched eyebrow, broad nasal base, bulbous nose,
short philtrum, microretrognathia, irregular tooth align-
ment), corporeal dysmorphic features (distal phalangeal
abnormalities, 5th finger camptodactily, brachydactyly of
the feet, scolioses and joint hyper mobility), ID and ASD.
The most important genes seated in that region are PKP2,
ALG10, KRAS, FGD4, PTHLH, DNM1L. However, an add-
itional 0.191 MB deletion in 2pl16.3 was found using
aCGH microarray. NRXN1 is considered the most signifi-
cant gene in this region. According to Soysal et al. [12],
the role of neurexin genes in synaptogenic activities
has been previously attributed as a cause of ASD as
well as other developmental and psychiatry disorders.
The social deficits and behavioral abnormalities in
this patient could most likely be a combination of in-
fluences coming from both regions. Therefore, a clear
understanding in the role of deletion 12p11.1-p12.1
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Table 3 Distribution of genes located in the 12p region
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Gene

Protein

OMIM

Function

TNFRSF1A

LRP6

CLEC7A

GABARAPL1

CLECIB

STYK1

PRB4

PRH2

CLECI2A

PRB1

TAS2R43

PRB2

KLRATP

TAS2R31

TNF receptor superfamily member 1A

LDL receptor related protein 6

C-type lectin domain family 7 member A

GABA type A receptor associated protein like 1

C-type lectin domain family 1 member B

serine/threonine/tyrosine kinase 1

proline rich protein BstNI subfamily 4

proline rich protein Haelll subfamily 2

C-type lectin domain family 12 member A

proline rich protein BstNI subfamily 1

taste 2 receptor member 43

proline rich protein BstNI subfamily 2

killer cell lectin like receptor A1, pseudogene

taste 2 receptor member 31

191190

603507

606264

607420

606783

61143

180990

168790

612088

180989

612668

168810

604274

612669

Activates NF-kappaB, mediate apoptosis, and function as a regulator
of inflammation. Germline mutations of the extracellular domains of
this receptor were found to be associated with the autosomal
dominant periodic fever syndrome.

Through its interaction with the Wnt/beta-catenin signaling cascade,
this gene plays a role in the regulation of cell differentiation,
proliferation, and migration and the development of many cancer
types.

Functions as a pattern-recognition receptor that recognizes a variety

of beta-1,3-linked and beta-1,6-linked glucans from fungi and plants,
and in this way plays a role in innate immune response.

Interacts with a cohort of 67 proteins, with extensive binding partner
overlap between family members, and frequent involvement of a
conserved surface on ATG8 proteins known to interact with LC3-
interacting regions in partner proteins.

Expressed in myeloid cells and NK cells, which express, multiple
calcium-dependent (C-type) lectin-like receptors, such as CD94 and
NKG2D that interact with major histocompatibility complex class |
molecules and either inhibit or activate cytotoxicity and cytokine
secretion.

Receptor protein tyrosine kinases, like STYK1, play important roles
in diverse cellular and developmental processes, such as cell
proliferation, differentiation, and survival.

Encodes a member of the heterogeneous family of basic, proline-rich,
human salivary glycoproteins. The encoded preproprotein undergoes
proteolytic processing to generate one or more mature peptides
before secretion from the parotid glands.

Encodes a member of the heterogeneous family of proline-rich
salivary glycoproteins. The encoded preproprotein undergoes
proteolytic processing to generate one or more mature isoforms
before secretion from the parotid and submandibular/sublingual
glands. Certain alleles of this gene are associated with susceptibility
to dental caries.

This gene encodes a member of the C-type lectin/C-type lectin-like
domain (CTL/CTLD) superfamily which share a common protein fold
and have diverse functions, such as cell adhesion, cell-cell signaling,
glycoprotein turnover, and roles in inflammation and immune
response. The protein encoded by this gene is a negative regulator
of granulocyte and monocyte function. This gene is closely linked
to other CTL/CTLD superfamily members in the natural killer gene
complex region on chromosome 12p13.

Encodes a member of the heterogeneous family of basic, proline-rich,
human salivary glycoproteins. This gene is located in a cluster of
closely related salivary proline-rich proteins on chromosome 12.

Belongs to the large TAS2R receptor family. TAS2Rs are expressed
on the surface of taste receptor cells and mediate the perception of
bitterness through a G protein-coupled second messenger pathway.

Encodes a member of the heterogeneous family of basic, proline-rich,
human salivary glycoproteins. The encoded preproprotein undergoes
proteolytic processing to generate one or more mature isoforms
before secretion from the parotid glands.

This locus was originally considered to be protein coding, but has
been reclassified as a transcribed pseudogene because all associated
transcripts are candidates for nonsensemediated decay (NMD).

Belongs to the large TAS2R receptor family. TAS2Rs are expressed
on the surface of taste receptor cells and mediate the perception of
bitterness through a G protein-coupled second messenger pathway
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PRB3 proline rich protein BstNI subfamily 3 168840
PRH1 proline rich protein Haelll subfamily 1 168730
CLEC9A C-type lectin domain family 9 member A 612252
TAS2R50 taste 2 receptor member 50 609627
CLECIA C-type lectin domain family T member A 606782
TAS2R46 taste 2 receptor member 46 612774
TAS2R20 taste 2 receptor member 20 613962
MAGOHB mago homolog B, exon junction complex _
core componente
TAS2R19 taste 2 receptor member 19 613961
TAS2R30 taste 2 receptor member 30 613963
CLEC12B C-type lectin domain family 12 member B _
PCS Parotid proline-rich salivary protein Pc 168710
TMEM52B transmembrane protein 528 _
MANSCT MANSC domain containing 1 _
TAS2R12P taste 2 receptor member 12 pseudogene =~ ——————
SMIM10LT small integral membrane protein 10 like 1~ ——————
TAS2R18P taste 2 receptor member 18 pseudogene =~ ——————
TAS2R63P taste 2 receptor member 63 pseudogene 0 o——————
TAS2R64P taste 2 receptor member 64 pseudogene = 0o——————
LOH12CR2 loss of heterozygosity, 12, chromosomal ~ ——————
region 2 (non-protein coding)
TAS2R15P taste 2 receptor member 15 pseudogene ~ ——————
TAS2R67P taste 2 receptor member 67 pseudogene = 0o——————
PR@ proline rich protein gene cluster = @ ——————
MORFA4L1P2 mortality factor 4 like 1 pseudogene2 =~ ——m———
HSPE1PI12 heat shock protein family E (Hsp10) member | ——————
pseudogene 12
RNU7-60P RNA, U7 small nuclear 60 pseudogene ~ ——————
RPL21P100 ribosomal protein L21 pseudogene 100 ~ ——————

Encodes a member of the heterogeneous family of basic, proline-rich,
human salivary glycoproteins. The protein isoforms encoded by this
gene are recognized as the “first line of oral defense” against the
detrimental effects of polyphenols in the diet and pathogen infections.

Encodes a member of the heterogeneous family of proline-rich
salivary glycoproteins. The encoded preproprotein undergoes
proteolytic processing to generate one or more mature isoforms
before secretion from the parotid and submandibular/sublingual
glands.

CLEC9A is a group V C-type lectin-like receptor (CTLR) that functions
as an activation receptor and is expressed on myeloid lineage cells.

Belongs to the large TAS2R receptor family. TAS2Rs are expressed
on the surface of taste receptor cells and mediate the perception of
bitterness through a G protein-coupled second messenger pathway.

Encodes a member of the C-type lectin/C-type lectin-like domain
(CTL/CTLD) superfamily. Members of this family share a common
protein fold and have diverse functions, such as cell adhesion,
cell-cell signaling, glycoprotein turnover, and roles in inflammation
and immune response. The encoded protein may play a role in
regulating dendritic cell function.

Belongs to the large TAS2R receptor family. TAS2Rs are expressed
on the surface of taste receptor cells and mediate the perception of
bitterness through a G protein-coupled second messenger pathway.

Encodes a member of the taste receptor two family of class C
G-protein coupled receptors. Members of this family are expressed
in a subset of taste receptor cells, where they function in bitter taste
reception, as well as in non-gustatory cells including those of the
brain, reproductive organs, respiratory system, and gastrointestinal
system.

Findings show 2 genes MAGOH and MAGOHB are expressed in
mammals; in macrophages, expression of MAGOHB but not MAGOH
mMRNA increases after LPS stimulation; both MAGOH proteins interact
with other exon junction complex (EJC) components, incorporate
into mRNAbound EJCs and activate nonsense-mediated decay

No description
No description
No description
No description
No description
No description
No description
No description
No description
No description
No description

No description

No description
No description
No description
No description

No description

No description

No description
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LINCO1252 long intergenic non-protein coding RNA 1252 —————
SLC25A39P2 SLC25A39 pseudogene2 —————
RNU6-545P RNA, U6 small nuclear 545, pseudogene  ~ —————
RN7SKP161 RNA, 7SK small nuclear pseudogene 161~ —————
IQSEC3P2 IQ motif and Sec7 domain 3 pseudogene 2.~ —————
DDX55P1 DEAD-box helicase 55 pseudogene 1~ —————
HNRNPABP1 heterogeneous nuclear ribonucleoprotein A/B —————
pseudogene 1
LOC255308 eukaryotic translation initiation factor2 ~~ —————

subunit gamma pseudogene
uncharacterized LOC102724020
uncharacterized LOC101928100

LOC102724020
LOC101928100

No description

No description

No description

No description

No description

No description

No description

No description

No description

No description

LOC440084 hcGlessoto - No description
LOC101928162 uncharacterized LOC101928162 = &@—————— No description
LOC440082 uncharacterized LOC440082 = ————— No description
Ref. [9, 26-34]

on ASD and related developmental disorders is not
fully doable in this case.

The 12p13.1 interstitial deletion

Dimassi et al. [35] reported on 3 intellectually disable
patients with 12p13.1 deletions. The molecular findings
had been initially investigated with aCGH technique and
posteriorly confirmed via FISH and qPCR tests. Overall,
they consisted in deletion of exon 1 and exon 2 of
GRIN2B. This gene encodes the NR2B subunit of
NMDA receptors, known to play a role in corticogen-
esis, neuronal migration and synaptogenesis during brain
development. According to Dimassi et al. [35], there
have been a few other reports in patients with ASD and
ID but no facial dysmorphic features (oval-shaped face,
arched eyebrows, almond-shaped palpebral fissures, long
philtrum, everted vermillion border of the lower lip and
broad chin) were noticed. In their paper, according to
the description of their 3 patients (Table 1), one was
considered autistic and 3 intellectually disabled. Further-
more, it is noteworthy to mention that only one also
presented with seizures.

The 12p13.33 distal subtelomeric deletion

In 2010, McDonald et al. [20] described a 40 week term
baby born from non-consanguineous parents with an
unremarkable family history, and after an uneventful
pregnancy. At the age of 6 years, microcephaly, short
nose, prominent ears were detected. In addition, the
child had cognitive and social difficulties. Despite having
tested with a normal karyotype, an MLPA test was fur-
ther carried on using SALSA P070 kit (MRC Holland).
The results indicated a deletion in the subtelomeric

region, which was further confirmed by FISH and aCGH
tests. The later revealed a 2.95 MB deletion in the region
comprised of 36 genes, 16 of which having clinical sig-
nificance according to OMIM. Although a more detailed
description of the patient’s social and behavioral difficul-
ties is lacking in this report, it appears as though this
child could potentially meet clinical criteria for the diag-
nosis of ASD, but this information is presumptive and
not subject to a reliable confirmation at this time.

Recently, another group of acknowledged genetic re-
searchers from Brazil published a report of an 8-year-old
male patient, who was also born with spina bifida [8].
The child was diagnosed with ASD by age 2,5 years. At
that time, the diagnosis was made on the basis of the
former DSM-IV-TR criteria and had also been sustained
by the CARS. This boy had a 1.5 Mb microdeletion in
12p13.33 zone, which encompasses 13 genes, one of them,
the ERCI, a 500 kb gene known to molecularly regulate
neuroplasticity and neurotransmitters in a presynaptic
level [8, 36]. By comparing previous reports [36, 37] of pa-
tients and taking into account the implications of synaptic
dynamics over the casual course of ASD, Silva et al. raised
awareness to the role of ERCI as part of the growing body
of genes that can potentially be accounted for the etiology
of ASD [8].

Conclusion

The 12p deletion spectrum is rarely described as part of
the selective genotypes thought to be related to ASD.
Even inside of a small piece of the puzzle, there might
be ample variation in the behavioral and clinical pheno-
types of children and adults presenting with this particu-
lar genetic profile.



Leyser et al. Molecular Cytogenetics (2016) 9:75

In that regard, the particular 12p13.2 distal deletion
presentation is one of the possible genotypes encom-
passed by the “12p deletion spectrum syndrome”, that
might potentially be connected to the diagnosis of ASD
and related developmental disorders.

Due to their role in the inflammatory, immunologic
and neuro trafficking routes, the genes TNFRSFIA, LRP6,
GABARAPLI, CLECIB, STYKI, CLECI12A, CLECIA, MA-
GOHB, and CLEC7A, that comprise part of 12p13.2 band,
might potentially play a role in the pathogenesis of
ASD. More extensive research is needed to clarify the
later.
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