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Abstract

Chromosomal microarray analysis (CMA) has been recommended and practiced routinely in the large reference
laboratories of U.S.A. as the first-tier test for the postnatal evaluation of individuals with intellectual disability, autism
spectrum disorders, and/or multiple congenital anomalies. Using CMA as a diagnostic tool and without a routine
setting of fluorescence in situ hybridization with labeled bacterial artificial chromosome probes (BAC-FISH) in the large
reference laboratories becomes a challenge in the characterization of chromosome 9 pericentric region. This region
has a very complex genomic structure and contains a variety of heterochromatic and euchromatic polymorphic
variants. These variants were usually studied by G-banding, C-banding and BAC-FISH analysis. Chromosomal microarray
analysis (CMA) was not recommended since it may lead to false positive results. Here, we presented a cohort of four
cases, in which high-resolution CMA was used as the first-tier test or simultaneously with G-banding analysis on the
proband to identify pathogenic copy number variants (CNVs) in the whole genome. CMA revealed large pathogenic
CNVs from chromosome 9 in 3 cases which also revealed different G-banding patterns between the two chromosome
9 homologues. Although we demonstrated that high-resolution CMA played an important role in the identification of
pathogenic copy number variants in chromosome 9 pericentric regions, the lack of BAC-FISH analysis or other useful
tools renders significant challenges in the characterization of chromosome 9 pericentric regions.

Trial registration: None; it is not a clinical trial, and the cases were retrospectively collected and analyzed.
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duplication, Pericentric inversion

Headings
CMA as the first-tier test for the identification of pathogenic
CNVs in chromosome 9 pericentric regions and its challenge.

Letter to the Editors
Chromosomal microarray analysis (CMA) has been
recommended as the first-tier test for the postnatal
evaluation of individuals with intellectual disability, autism
spectrum disorders, and/or multiple congenital anomalies

since 2010 [1, 2], and was later confirmed by other group
[3]. This practice has become a standard for the large ref-
erence laboratories in U.S.A after the American College of
Medical Genetics (ACMG) published the professional
guidelines [4]. In these laboratories, CMA has largely re-
placed fluorescence in situ hybridization (FISH) analysis
for the identification of pathogenic copy number variants
(CNVs) across the whole genome.
Chromosome 9 pericentric regions have been known to

contain a very complex genomic structure because of the
presence of a huge amount of heterochromatin and large
tracks of segmentally duplicated euchromatin [5, 6]. The
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segmentally duplicated sequences predispose and mediate
the generation of deletion, duplication, insertion, triplica-
tion and amplification variants within the pericentric re-
gions of chromosome 9 [5, 7]. In a cohort of 334 carriers
studied by using FISH analysis with different sets of la-
beled bacterial artificial chromosome (BAC) probes (BAC-
FISH), 17 different types of heterochromatic variants of
chromosome 9 have been identified [6], with pericentric
inversions being the most frequent variant (50 %) followed
by 9qh-variants (24 %) and 9ph-variants (11 %). Addition-
ally, four different types of euchromatic variants have been
detected: (1) 9p12 amplification variant [8, 9], (2) 9q12
insertion variant [5], (3) 9q21 deletion variant [5], and (4)
9q21 amplification variant [7]. Because of the presence of
repetitive sequences, chromosomal microarray analysis
(CMA) was not recommended to be utilized since it may
lead to false positive results [6, 7].
For this reason, we retrospectively reviewed our postna-

tal database to search interesting cases with CNVs in
chromosome 9. High-resolution CMA was either used as
the first-tier test or simultaneously ordered with G-
banding analysis. For G-banding, peripheral blood was
cultured for 72 h in RPMI-1640 medium. Metaphase
chromosomes were analyzed using standard G-banding
techniques. CMA was performed using genomic DNA ex-
tracted from uncultured whole blood on the oligo-SNP
array (CytoScan HD®, Affymetrix). Hybridization, data
extraction and analysis were performed as per manufac-
turer’s protocols. The Affymetrix® Chromosome Analysis
Suite (ChAS) Software version 2.0 was used for data ana-
lysis, review and reporting. For chromosome 9, the probes
from CytoScan HD® covered the following genomic regions:
9p (chr9:192,129–40,784,142, 43,400,082–44,900,526) and
9q (chr9:66,837,485–141,025,328). Thresholds are set at

>200 kb for gains, >50 kb for losses for genome-wide
region, and at >100 kb for gains, >20 kb for losses for
cytogenetic relevant regions. Genomic coordinates are
based upon genome build 37/hg19 (2009).
Patient 1 was a newborn girl who was referred to rule

out a chromosomal anomaly. Using G-banding, it was
initially reported as a common chromosome 9 normal
pericentric inversion variant, 46,XX,inv(9)(p13q21.11),
with a morphology similar to inv(9)(var2) in the previous
report [6]. The second reviewer thought it was a large
pericentric inversion, 46,XX,inv(9)(p13q32) since the
band 9q31 was missing (Fig. 1a, arrow) and instead
inverted to 9p13 region (Fig. 1a, arrow head), and con-
sidered that it was not a variant. Further characterization
of this large pericentric inversion by concurrent high-
resolution CMA revealed the presence of an interstitial
deletion of 14 Mb at 9q22.3–q32 (chr9:104,382,544–
118,273,644; hg19; Fig. 1b; the genes involved were listed
in the Additional file 1: Table S1). The revised karyotype
was 46,XX,del(9)(q22.3q32)inv(9)(p13q21.11). It was
concluded that two chromosomal rearrangements have
occurred to the same chromosome 9: a polymorphic
pericentric inversion and an interstitial deletion of
9q22.3–q32. It is actually very difficult to distinguish be-
tween the deletion of 9q22–q32 and 9q32–q34 without
using molecular cytogenetic methods [10, 11]. Usually the
patients with interstitial deletions involving 9q22 had a
loss of the PTCH1 gene (chr9: 98,205,265–98,279,247),
and thus revealed typical features of Gorlin syndrome
[12–14]. However, since the deletion in this patient was
distal to the PTCH1 gene, this newborn girl did not have
Gorlin syndrome.
Patient 2 was a 2-year-old girl with developmental

delay, lack of coordination, mixed receptive expressive

Fig. 1 a G-banding analysis of patient 1 revealed a pericentric inversion of chromosome 9; the missing band 9q31 (arrow) was initially considered
to be inverted to 9p13 region (arrow head); b CMA identified a pathogenic interstitial deletion of 14 Mb at 9q22.3-q32 (chr9:104,382,544–
118,273,644; hg19); c G-banding analysis of patient 2 revealed an extra band at 9qh; d CMA identified a pathogenic gain of 6.3 Mb from 9q21.33–
q22.31 (chr9:90,118,500–96,395,801); e G-banding analysis of patient 3 revealed an extra band at the 9q22.1 region; f CMA identified a 10.4 Mb
pathogenic gain from 9q21.31–q22.2 (chr9:82,745,056–93,173,691); g G-banding analysis of patient 4 revealed an extra band at 9q12 region with a
morphology similar to that of patient 2; h CMA did not reveal copy number changes, which ruled out the presence of pathogenic variants
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language disorder and convulsion. It was initially consid-
ered as a chromosome 9 euchromatic variant with an
extra G-dark band within the proximal 9q heterochro-
matin region or it could be an insertion or duplication
from 9q13–q21.1 (Fig. 1c, arrow). The C-banding was
negative. This type of euchromatic variant has been re-
ported in several cases [5, 15, 16] and classified as one of
the four major categories of euchromatic variant [7].
The high-resolution CAM that was simultaneously per-
formed, however, showed a genomic gain of 6.3 Mb from
9q21.33–q22.31 (chr9:90,118,500–96,395,801; hg19;
Fig. 1d; genes involved listed in the Additional file 1:
Table S1). This case was an excellent example of how
CMA analysis showed that an extra G-dark band in prox-
imal 9q was a pathogenic duplication of proximal 9q ra-
ther than a euchromatic variant. This gain did not include
the PTCH1 gene (located at chr9: 98,205,265–98,279,247)
and, thus the phenotype was different from the previously
reported familial cases with 9q22.3 microduplication span-
ning PTCH1 [17], and without microcephaly or holopro-
sencephaly that were often seen in patients with gain of
PTCH1 [18].
Patient 3 was a 24-year-old woman referred to rule out

a chromosomal disorder with reported family history of a
chromosome 9 abnormality. G-banding analysis consid-
ered it was an insertion of an extra band to the 9q22 re-
gion (Fig. 1e). CMA revealed it was a duplication of
10.4 Mb from 9q21.31-q22.2 (chr9:82,745,056–93,173,691;
Fig. 1f; genes involved listed in the Additional file 1: Table
S1). Duplication of 9q21.2–q22.3 was reported in a 2-
year-old female with growth and motor retardation and in
her aunt without apparent phenotypic anomalies [19], and
a more distal duplication of 9q22.31–q22.32 was associ-
ated with congenital diaphragmatic hernia [20]. Our
patient was not known to have these anomalies.
Patient 4 was a 10-year-old boy with failure to thrive

and cognitive deficits. G-banding analysis revealed an
extra band at 9q12 region (Fig. 1g), and C-banding was
positive (Additional file 2: Figure S1). CMA did not re-
veal copy number variants (Fig. 1h) since the probes
from the CMA apparently did not cover the repetitive
sequences. The G-positive and C-positive extra band in
this case was concluded as a rare heterochromatic vari-
ant [6], instead of a G-positive and C-negative euchro-
matic variant [7].
The four cases described here demonstrate how CMA

characterize the chromosome 9 pericentric regions along
with G-banding and/or C-banding without access to
BAC-FISH analysis. Patient 1 was a very rare case with
the presence of an interstitial deletion which coexisted
with a polymorphic pericentric inversion. Patient 2 was
an excellent example of how CMA differentiated a
pathogenic gain from a heterochromatic variant as ob-
served in patient 4. In patient 3, CMA revealed it was a

likely pathogenic duplication although previous report
showed a reduced penetrance in one family study [19].
Although we demonstrated that high-resolution CMA

played an important role in the identification of patho-
genic copy number variants in chromosome 9 pericen-
tric regions, the lack of BAC-FISH analysis as a routine
setting in the large reference laboratory renders signifi-
cant challenges in further characterization of chromo-
some 9 variants. The major advantage of using CMA as
the first-tier test is to detect pathogenic CNVs across the
whole genome including chromosome 9. However, when
a huge amount of heterochromatin and large tracks of
segmentally duplicated euchromatin are present in
chromosome 9 pericentric regions, CMA was unable to
differentiate tandem, inverted and insertional duplica-
tion, or to confirm pericentric inversion. Our cohort
supported using CMA as first-tier test when chromo-
somal disorders were indicated to rule out the presence
of pathogenic copy number variants, and using BAC-
FISH analysis to further evaluate heterochromatic and
euchromatic variants of chromosome 9.

Additional files

Additional file 1: Table S1. List of genes that are involved in the CNVs
of case 1-3. (DOC 32 kb)

Additional file 2: Figure S1. The extra G-positive band was most likely
C-positive by C-banding analysis (arrow) in one chromosome 9 homologue,
which indicated that the extra band was heterochromatin in origin. The
other chromosome 9 homologue also showed a large amount of
heterochromatin (arrow head). The C-banding result was not 100 %
conclusive, and thus using BAC-FISH with proper probes will be able to
confirm this result. (JPG 28 kb)
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BAC, bacterial artificial chromosome; CMA, chromosomal microarray analysis;
FISH, fluorescence in situ hybridization
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