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Abstract

Background: Thrombocytopenia-absent radius syndrome (TAR; MIM 274000) is a rare autosomal recessive disorder
combining specific skeletal abnormalities with a reduced platelet count. TAR syndrome has been associated with
the compound inheritance of an interstitial microdeletion in 1q21.1 and a low frequency noncoding RBM8A SNP.

Results: Here, we report on a patient with scapulo-humeral hypoplasia, bilateral radio-ulnar agenesis with intact
thumbs, bilateral proximal positioning of the first metacarpal, bilateral fifth finger clinodactyly, bilateral radial
deviation of the hands, and thrombocytopenia. Molecular studies showed compound heterozygosity for the 1q21.1
microdeletion and the RBM8A rs139428292 variant in hemizygous state, inherited from the father and the mother,
respectively. A second aborted fetus presented TAR features and 1q21.1 microdeletion.

Discussion: The complex inheritance pattern resulted in reduced expression of Y14, the protein encoded by
RBM8A, and a component of the core exon-junction complex (EJC) in platelets. Further studies are needed to
explain how Y14 insufficiency and subsequent defects of the EJC could cause the skeletal, haematological and
additional features of TAR syndrome. In this study, we discuss other factors that could influence the overall
phenotype of patients affected by TAR syndrome.

Conclusion: In this study, we discuss other factors that could influence the overall phenotype of patients affected
by TAR syndrome.
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Background
Since the introduction of array-CGH analysis, the reported
frequency of genomic imbalances associated with specific
phenotypes has dramatically increased. Copy number varia-
tions (CNV) with incomplete penetrance and variable ex-
pressivity have been described in various disorders [1–5].
The association between genomic imbalances and patho-
logical traits can be variable, and additional genetic varia-
tions could contribute to the phenotype.

In addition, several other possibilities as epigenetic
phenomena, expression or regulatory variation among genes
in the vicinity of the unbalanced region, the unmasking of
recessive alleles and the possibility of a “two-hit” model, as
proposed by Girirajan et al. [6], may account for the
phenotypic variability of some genomic diseases.
Human chromosome 1 is rich in segmental duplications,

particularly within the pericentromeric region [7–10]. This
fact may result in the susceptibility of this region to both
pathological and non-pathological CNVs that might have
an evolutionary significance.
TAR syndrome (Thrombocytopenia -Absent-Radius) syn-

drome (MIM 274000) is characterized by thrombocytopenia
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that may be episodic, congenital skeletal deformities in-
cluding bilateral absence of radius, shortening and de-
formity of the ulnae, and occasionally absence of all the
long bones in the arm. The fingers and thumbs are al-
ways present, while other skeletal anomalies are fre-
quent [11].
A chromosome 1q21.1 microdeletion was identified in

30 patients affected by TAR syndrome [12]. This micro-
deletion is mediated by Low Copy Repeats (LCRs) that
can be at the basis of recurrent DNA rearrangements
such as deletions, duplications and inversions through
chromosome or chromatid misalignment followed by
non-allelic homologous recombination (NAHR) [13–15].
TAR syndrome has a complex pattern of inheritance

associated with a minimal common interstitial microde-
letion of 200 Kb on chromosome 1q21.1. In several
cases, it is inherited from an unaffected parent, while in
others it is originated de novo and the presence of a
1q21.1 microdeletion is necessary but not sufficient to
cause the phenotype.
Recently, it has been shown that compound inheritance

of a rare null allele and one of the two low-frequency non-
coding SNPs (rs139428292 or rs201779890) in RBM8A
are crucial for TAR syndrome [16].
Here, we describe the clinical, cytogenetic and molecu-

lar features of a 4-month-old boy with TAR syndrome
due to co-segregation of 1q21.1 microdeletion and
rs139428292. An aborted fetus in the same family pre-
sented the same phenotypic features and 1q21.1 micro-
deletion. We discuss here whether other factors could
influence the overall phenotype of TAR syndrome.

Case report
The family tree is depicted in Fig. 1.

Patient 1
The child (II-2) (Fig. 2a) is the first male child of appar-
ently healthy nonconsanguineous parents. The mother
and the father were 33 and 45 years old respectively at
the time of his birth. Fetal movements were poor. Rou-
tine ultrasound examination was normal until 23 weeks
of gestation when bilateral radial agenesis was demon-
strated. The child was born post-term at 43 weeks of
gestation by normal vaginal delivery. Birth weight was
2810 g (10th-25th centile). He was admitted to our
institute at 4 months of age. Physical examination
showed good nutritional status, forehead and right
cheek telangiectasia, scapulo-humeral hypoplasia, bilat-
eral radio-ulnar agenesis with intact thumbs, bilateral
proximal positioning of the first metacarpal, bilateral
fifth finger clinodactyly and bilateral radial deviation of
the hands. X-ray confirmed all these skeletal findings.
The child also presented thrombocytopenia (40.000/
mmc), PTT (43.7 s). The phenotypic features were
characteristic of TAR syndrome (MIM 274000).

Patient 2 (Fetus)
During the third pregnancy (II-3) (Fig. 1b), ultrasound
examination was performed at 11 weeks of gestation,
suggesting the presence of upper limb anomalies. This
finding was confirmed at 15th week of gestation. The
couple opted for termination of pregnancy. The chromo-
somal analysis of amniotic cells (400 bands) excluded
any visible abnormality. Post-mortem examination of the
fetus demonstrated bilateral radial agenesis (Fig. 2b).
The mother had a previous pregnancy, which ended
in spontaneous abortion at the 2nd month of gestation
(II-1). There was no exposure to alcohol, smoking or

Fig. 1 Genealogical tree of the family with TAR syndrome
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infections during pregnancy. A subsequent pregnancy
resulted in the delivery of a healthy child (II-4).

Results
All patients and their parents showed a normal karyotype.
Array-CGH analysis was performed on the available mem-
bers of the family. An identical 1q21.1 microdeletion
(~539 Kb) [arr 1q21.1(145,291,711-145,831,389)x1] was
identified in the child with phenotypic features of TAR
syndrome (II, 2) as showed in Fig. 3a. The microdeletion
was confirmed by FISH (Fig. 3b). The same microdeletion
was also present in his apparently normal father (I, 1). An
elective abortion was performed because of ultrasound
findings of upper limb anomalies, strongly suggestive of
TAR syndrome (II, 3). FISH analysis by BAC RP11-
105E14 (chr1:145,474,158-145,636,051) on archived
specimens confirmed the presence of the “TAR micro-
deletion” (Fig. 3c). In the same family, one spontaneous
abortion (II, 1) was reported but unfortunately not in-
vestigated, as biological specimens were not available.
The deleted region contains 12 MIM genes: NBPF20
(MIM 614007; neuroblastoma breakpoint family, member
20), NBPF10 (MIM 614000; neuroblastoma breakpoint
family, member 10), NBPF9 (MIM 613999; neuroblastoma
breakpoint family, member 9), HFE2 (MIM 602390;
hemochromatosis type 2A), TXNIP (MIM 606599;
thioredoxin-interacting protein), RBM8A (MIM 605313;
RNA-binding motif protein 8A), GNRHR2 (MIM 612875;
gonadotropin-releasing hormone receptor 2), PEX11B
(MIM 603867; peroxisome biogenesis factor 11B), ITGA10
(MIM 604042; integrin, alpha-10), PIAS3 (MIM 605987;
protein inhibitor of activated STAT3), CD160 (MIM
604463; CD160 antigen), PDZK1 (MIM 603831; PDZ

domain-containing 1). It is interesting to note the pres-
ence of the LIX1L (Gene ID: 128077; Lix1 homolog
(chicken) like) gene (Fig. 3d).
The family were analysed for the rs139428292 (G > A)

and the rs201779890 (G > C) SNPs of RBM8A gene by
direct sequencing. The analysis of rs139428292 showed
that the patient harboured the minor (A) allele, which
was inherited from his healthy mother. The father and
the healthy brother were both homozygous for the major
(G) allele. All family members carried the major (G) al-
lele of rs201779890 in a homozygous state (Fig. 4).

Discussion
We describe an identical 1q21.1 microdeletion in af-
fected and non-affected members of a family with TAR
syndrome. The same rearrangement was firstly described
in 30 patients affected by Thrombocytopenia-Absent-
Radius (TAR) syndrome (MIM 274000), a rare malfor-
mation syndrome characterized by hypo-megakaryocytic
thrombocytopenia and bilateral absence of the radius in
the presence of both thumbs [12]. The microdeletion
was inherited from either the unaffected mother or the
unaffected father in 75 % of cases. Recently, it has been
proposed to consider this syndrome as a complex trait
disease requiring at least two genetic changes: the rare
microdeletion and another, relatively frequent, genetic
variation that acts as a modifier of the other one. The
family described in this study was referred to our centre
for TAR syndrome and was investigated by array-CGH.
A 1q21.1 microdeletion of ~539 Kb overlapping the TAR
critical region, inherited from the phenotypically normal
father, was identified in the two affected cases (II, 2 and
II, 3). The identification of the interstitial microdeletion

Fig. 2 a The proband (II-2); bilateral absence of radius with thumb conservation and bilateral genu varum. b The fetus (II-3); bilateral radial aplasia
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Fig. 3 Results of array-CGH and FISH analyses. a Array-CGH analysis shows a ~539 Kb microdeletion at 1q21.1 band inherited from the father. b
FISH confirmation of a hemizygous interstitial 1q21.1 deletion using a BAC probe RP11-105E14 (chr1:145,474,158-145,636,051) (red). c Interphase
FISH with RP11-105E14 (chr1:145,474,158-145,636,051) (red) on deparaffinized fetal tissue from patient II, 3. Nuclei show a unique red signal indicating
the presence of the deletion. d Overview of the 1q21.1 region and its genes and LCRs contents, according to the UCSC Genome Browser (GRCh37/
hg19 assembly). The bars indicate the deleted region (red) in our patient and the deleted regions in patients reported by Guastadisegni et al. [28],
Papoulidis et al. [30] and Bottillo et al. [29].

Fig. 4 Results of Sanger sequencing of the rs139428292 variant (G > A) obtained from the patient and his unaffected mother and his
unaffected brother
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in affected offspring and the paternal inheritance are in
agreement with the findings of Klopocki and collabora-
tors [12]. The presence of 1q21.1 microdeletion is neces-
sary but not sufficient to cause the phenotype, since, in
the majority of cases, TAR traits can develop only in the
presence of a second modifier as the low-frequency
regulatory SNP reported by Albers et al. [16].
In fact, a study identified two rare single nucleotide

polymorphisms (SNPs) in the regulatory region of the
RBM8A gene that are involved in TAR syndrome
through the reduction of the expression of the RBM8A-
encoded Y14 protein [16]. The first allele (rs139428292
G > A), which is located in the 5′ untranslated region
(UTR) of the gene, was demonstrated to have a minor
allele frequency (MAF) of 3.05 %, and the second allele
(rs201779890 G > C), located in the first intron of the
gene, exhibited a MAF of 0.42 %, in 7504 healthy indi-
viduals from Cambridge BioResource (Cambridge, UK)
[16, 17]. Our patient had inherited a low-frequency 5′
UTR SNP (rs139428292 G > A) from his mother and the
1q21.1 microdeletion from his father.
A number of patients with TAR syndrome were re-

ported, but in almost all these cases the precise coordi-
nates of the deleted regions were not available and in
others no mutation analysis of RBM8A SNP had been
performed [18–27].
At our knowledge, in only three TAR cases with

1q21.1 deletion, analysed by array-CGH, the precise co-
ordinates of the deletion has been reported [28–30]
(Fig. 3d). Two are prenatal cases and one postnatal. All
have the classical TAR features (thrombocytopenia,
upper limbs and hands anomalies); two have inherited
the low-frequency 5′ UTR SNP (rs139428292 G > A)
and the minimal overlapping 1q21.1 deletion region ran-
ging from 145,415,190 to 145,747,269 [29, 30].
Particularly, the child affected by TAR syndrome associ-

ated with Langerhans cell histiocytosis described by Guas-
tadisegni et al. [28] showed a larger deletion (2.029 Kb)
and a significant downregulation of the commonly deleted
genes. The mainly implicated gene in the syndrome is
RBM8A, a gene encoding the exon-junction complex sub-
unit member Y14. Y14 is a small protein with an RNA-
binding domain and one of the four components of EJC,
which is involved in basic cellular functions such as
nuclear export and subcellular localization of specific tran-
scripts, translational enhancement, nonsense-mediated
RNA decay and splicing [31]. It has a crucial role during
embryonic developmental [32]. The level of Y14 was
found to be significantly lower in the platelets of TAR
patients. It is noteworthy, that Y14 may regulate the
expression of genes involved in the proliferation of
hematopoietic cells. However, it is not clear how a defi-
ciency in Y14 exerts its effects at a cellular level and in
particular how it affects the production of megakaryocytes

and platelets. A possible explanation for this observation
could be that deficiency in EJC could have an influence on
the defective cell signalling in megakaryocyte. Similarly,
no relation has been found between RBM8A deletion and
TAR skeletal anomalies. To provide an explanation for the
skeletal abnormalities observed in TAR syndrome, Albers
et al., [24] assumed that, in addition to a tissue-dependent
effect, it is possible that the regulatory SNPs had develop-
mental stage–dependent consequences keeping as an ex-
ample the Mecom gene encoding Evi1 that is expressed in
a transient manner in emerging limb buds in mouse [33].
Albers et al., [24] explained that TAR phenotype could

be also influenced from other factors such as environ-
mental factors altering gene expression, incomplete
penetrance or additional modifier alleles. We speculate
that other genes in the 1q21.1 region other than RBM8A
could influence the phenotype of TAR syndrome. It is
interesting to note that, among the several genes with a
known function located within the region, the PIAS3
gene could be indicated as the most conspicuous candi-
date for thrombocytopenia and the Lix1L gene, known
be transiently expressed during chick hind-limb develop-
ment, could be proposed as the candidate gene for limb
abnormalities [34–36].

Conclusions
In conclusion, we reported on a new familial case of
TAR syndrome in a child and in a fetus carrying a
1q21.1 microdeletion and the low-frequency 5′UTR
SNP (rs139428292 G > A). We also focused on two
genes (PIAS3 and Lix1L), contained in the deleted re-
gion, which could play a role in determining some im-
portant aspects of the phenotype of this syndrome.
Obviously, further in-depth studies are needed to clarify
the possible role of these genes.

Methods
Cytogenetics, fluorescent in situ hybridization and array-
CGH analyses
Karyotypes were performed on peripheral blood of pa-
tients and their parents. Fluorescent in situ hybridization
(FISH) analysis was performed following the manufac-
turer’s instructions (Vysis, Abbott Molecular, Illinois,
U.S.A.). BAC clone was selected from the human library
RPCI-11 according to the UCSC Human Genome As-
sembly (GRCh37/hg19). Array-CGH using the Human
CGH Kit 244 K (Agilent Technologies, Palo Alto, CA,
U.S.A.) covering the whole genome with a 8.9 Kb overall
median probe spacing was performed following the
manufacturer’s protocol.

FISH analysis on paraffin-embedded fetal tissues
To prepare paraffin-embedded tissue sections fixed on
positively charged slides we cut 4–5 mμ thick paraffin
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sections using a microtome. Floating sections were
mounted on positively charged slides. Slides were
treated by Paraffin Pretreatment Kit (Abbott Molecular
Inc., IL, USA) to deparaffinise specimens. Then, the
slides were treated with protease and hybridization with
BAC probes was performed according to the appropri-
ate Vysis protocol.

Genotyping of 5′ UTR and intronic SNP of the RBM8A
gene
The genotypes of the rs139428292 and the rs201779890
SNPs were obtained. Genomic DNA was isolated from
peripheral blood leukocytes using a standard protocol.
The genomic regions encompassing the two SNPs were
PCR amplified, purified and then sequenced on both
strands using the BigDye dideoxy-terminator chemistry
on an ABI 3100 DNA sequencer (Applied Biosystems,
Foster City, CA). Primers used for both amplification and
sequencing were the following: rs139428292 (Fw:
CCTTTCCCCTCTGCGACA; Rv: CCCAGCCTCGTGA
AGATCTA) and rs201779890 (Fw: TAGATCTTCAC-
GAGGCTGGG; Rv: GGGGCGGAATCTCTAATCCA).
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