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Abstract

cytogenetic subgroup in childhood AML.

Deletions in the long arm of chromosome 5 or loss of the whole chromosome are rare in childhood Acute Myeloid
Leukemia (AML) patients. It is also unknown if the wide variety of breakpoints have diverging implications in the
patient’s outcome. Despite -5/50- abnormalities have usually been described as a poor prognostic feature, however,
the low frequency of -5/5g- in pediatric AML patients limits a full knowledge about this cytogenetic and clinical
category, which is an intriguing factor for further research and new findings. Here, we report an AML child showing
an uncommon deletion in 5g associated with 2 new abnormalities involving chromosome 2 within a complex
karyotype well-characterized by several molecular cytogenetic approaches. Our work stimulates upcoming studies
with more detailed descriptions about 5g abnormalities to better define its role in the stratification risk of such
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Background

Several studies in childhood acute myeloid leukemia
(AML) have been showing three prognostic cytogenetic
group classification: favorable cytogenetics, that includes
t(8;21), t(15;17) and inv(16), high-risk cytogenetics, that
includes complex karyotypes, monosomy 7, monosomy 5,
del(5)(q) or abnormalities in 3q, and intermediate risk:
other changes [1]. The subgroup that has -5/5q rearrange-
ments is rare and comprises about 1-2.5 % of pediatric
AML cases [2]. This finding was recently confirmed by
Johnston et al., which described cytogenetics data of 26
pediatric patients (1.2 %) with -5/5q abnormalities in a
retrospective study, including 2240 children and observed
that this cytogenetic subgroup presented a very poor out-
come [3]. Despite of a concise and comparative study in a
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large cohort of childhood AML, the low frequency of 5q-
cases limit a full comprehension of the cytogenetic and
clinical implications of this subgroup [1, 3, 4]. Thus, to
contribute to the understanding of this rare subgroup
within childhood AML, we describe the clinical, G-
banding and molecular cytogenetic data of a child with
AML showing an uncommon deletion 5q22 in a new
complex karyotype.

Case presentation

Case report

A 10-year-old boy was admitted with a 4-months history
of fever, generalized lymphadenopathies and weight loss.
Physical examination revealed mucositis and gingival
hyperplasia. The abdomen was painless with no palpable
mass. Imaging examination revealed mediastinal widening.
At admission, the hemoglobin was 7.2g/L, white blood cell
count was 67.5x10°/L and platelet count was 275x10°/L.
The peripheral blood smear showed 80 % of blast cells.
Bone marrow was hypercellular with 94,6 % FAB-M1
myeloid blast cells, being 93,7 % of granulocytic
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progenitors (CD34"™; MPO”*®° %) CD117™; HLA-DR";
CD13"; CD367; CD11b~; CD167; CD647; CD357; CD147;
IREM-; CD71'% CD1057; CD337+*° ®; TdT*; CD77/*¢ *;
CD38", CD2%; CD15"). The patient was initially classified
for intermediate-risk arm, and treated on AML-BFM 2012
protocol [5].

Morphological examination of the bone marrow on days
15 and 33 of induction chemotherapy revealed myeloid
blast cells comprising >25 % (M3 bone marrow evalu-
ation) and M2 (- >5 to 25 %), respectively. At the 42nd
day from the beginning of the treatment, the blast cell
percentage in the bone marrow was 21,6 %. The patient
achieved a late complete remission (0.7 % blast cells, <
5 % - M1) only on day 79 of treatment. Due to the persist-
ence of blast cells after the second induction (42nd day
from the beginning of the treatment), the patient was
stratified to high-risk arm, and was submitted to allogen-
eic stem cell transplantation, as recommend by the proto-
col [5]. This procedure was well tolerated and the patient
is in continuous complete remission for eight months
now and twelve months since initial diagnosis. This study
was approved by the Ethics Committee of the Brazilian
National Cancer Institute (CEP #088/07).

Methods and results

G-banding studies revealed a karyotype 46,XY,der(2)?
t(2;15),del(5), der(14)?add(14)(q23) in 15 of 20 meta-
phases analyzed (Figs. 1a, b and c). Several molecular ap-
proaches were performed to discover this complex
karyotype. FISH was performed using the LSI EGRI
SpectrumOrange/D5523 (5q31), D55S721 SpectrumGreen
(5p15) probes (Vysis) and showed a heterozygous EGRI
deletion in 10 metaphases analyzed and interphase nu-
clei analysis revealed the same pattern in 150 of 200 ana-
lyzed cells (Fig. 1d). Although FISH using LSI IGH break
apart showed no split signal (Fig. le), the position of
IGH normal signal suggested that there was a transloca-
tion between the chromosomes 2 and 14 (Fig. le).
Whole Chromosome Painting (WCP) probes for chro-
mosomes 2, 14 and 15 were also applied and the results
revealed a translocation between chromosomes 2 and 14
and also between the other homolog of chromosome 2
and chromosome 15, therefore the karyotype had no
normal chromosome 2 (Fig. 1f). Further, Multicolor
Chromosome Banding (MCB) was performed for chro-
mosomes 2, 5, 14 and 15, as previously reported [6].
Overall, MCB characterized a complex chromosomal al-
teration between chromosomes 2, 14 and 15 (Fig. 1g). In
order to define all the breakpoints involved in this com-
plex translocation, mainly 5q-, it was necessary to apply
several Bacterial Artificial Chromosome (BAC) probes
(Table 1). The final karyotype was characterized as:
46,XY,t(2;14)(q23.1,q32.2),t(2:15)(p22.3;q21.1),del(5)(q22-
qter). The karyotype was described according to the
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International System for Human Cytogenetic Nomencla-
ture [7].

Discussion

Abnormalities of chromosome 5 are a common finding in
patients with hematological malignancies with poor out-
come [8]. The deletion of the long arm of chromosome 5
and monosomy of 5 has been described most frequently
in Myelodysplastic Syndrome (MDS) cases. However, it
has been already documented as a recurring finding in
AML and it is associated with dismal outcome [9]. 5q
deletion has been shown a wide variety of breakpoints and
it has been reported within complex karyotypes.

Johnston and coworkers described in a wide retrospect-
ive cohort of 2240 pediatric AML patients, that 5q dele-
tion was also associated with poor outcome, in which to
have more than three cytogenetic abnormalities showed
worse outcomes than those with three or fewer cytogen-
etic abnormalities [3]. On the other hand, it is important
to remark that 7/26 patients, from the above-mentioned
work were classified as harboring unbalanced rearrange-
ments resulting in 5q loss, all of that without thoroughly
refine the karyotype in the search for the presence of
cryptic abnormalities, which may be particularly hard to
detect in G-banding cytogenetics.

In the present work, the patient carries on the deletion
of chromosome 5 within a complex karyotype and has lost
a large portion from the long arm of one of the chromo-
somes 5. Initially, the FISH assay, with LSI probes, dem-
onstrated the deletion of 5q31, but with FISH using
several BAC probes (Table 1) and MCB approaches, we
could detect the breakpoint in 5q22 which is an uncom-
mon finding in patients harboring 5q deletion suggested
by LSI FISH analysis.

Volkert et al., suggested that the type of cytogenetic
abnormality leading to loss of 5q may harbor important
prognostic information. A wide series of MSD and AML
adult patients were taken into account in this work. This
study showed that the two main commonly deleted
regions (CDR) have distinct prognostic value. The CDR1
(5q32) is present in patients with 5q- MDS and isolated
5q deletion, being associated with a good prognosis. The
CDR2 (5q31) is present in aggressive MDS and high-risk
AML, and has been associated to complex karyotypes
and demonstrated a worse prognosis [9].

Interestingly, our patient presented a loss of large por-
tions from the long arm of one of the chromosome 5 that
comprised 5q22 to 5qter, including both CDR regions. In
this large portion lost in our patient, the literature in-
cludes APC, EGR1, CTNNAI, DIAPHI, NPM1, GLRAI,
RPS14, UBE2D2 genes whose disruption of expression
may lead to defects in hematopoiesis in mice and other
defects in core process to cell development. Lastly, these
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Fig. 1 a, b, and c show the final partial G-banding karyotype. a t(2;15)(p22.3;g21.1); b del(5)(922); ¢ t(2,14)(923.1,g32.2). d FISH with LSI 5p15/5g31
(EGR1) showing a deletion of the red signal (5g31) in a metaphase and in nuclei interphase. e FISH with WCP for chromosome 2 (green), 14 (red)
and 15 (yellow) shows translocation between chromosomes 2, 14 and 15 (R-DAPI image). f FISH-results characterizing the normal and
derivative chromosomes 2, 5, 14 and 15 are summarized. In the first line results of MCB for chromosome 2 are depicted and show both
derivatives 2 and derivative 14 and 15. The second line shows the normal chromosome 5 and a derivative of chromosome 5. The third
line shows the normal chromosome 14 and the derivative chromosomes 2 and 14. The fourth line shows the normal chromosome 15
and the derivative chromosomes 2 and 15. Here, MCB probe sets for chromosomes 2, 5, 14 and 15 were used. According to FISH and
MCB results, the karyotype was re-interpreted as 46,XY, t(2;14)(g23.1,g32.2), t(2:15)(p22.3,g21.1) and del(5)(q22-gter)
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Table 1 Probes and BACs applied in the case to characterize the breakpoint in each chromosome involved

Cytoband Position [hg19] Probe Results in derivative chromosomes
2p24.3 chr2: 16,014,784-16,140,647 RP11-119F22 Signal on der(15); no split signal
29233 chr2: 26,967,697-27,136,688 RP11-106G13 Signal on der(15); no split signal
2p23.2 chr2: 29,415,640-29,447,593 SPEC ALK Signal on der(15); no split signal
2p22.3 chr2:35,864,069-36,032,088 RP11-119B15 Signal on both der(2); no split signal
29223 chr2:145,181,324-145,355,222 RP11-6402 Signal split on der(2) and on der(14)
2g23.3 chr2:153,589,449-153,743,069 RP11-58K7 Signal on der(14); no split signal
515 chr5:93,905,245-93,906,381 RP11-461G12 Signal on der(5)

515 chr5:95,549,050-95,550,779 RP11-254122 Signal on der(5)

515 chr5:97,013,251-97,014,385 RP11-72K17 Signal on der(5)

5021.1 chr5:98,701,067-98,853,238 RP11-102H6 Signal on der(5)

50211 chr5:100,241,673-100,434,269 RP11-109H23 Signal on der(5)

50213 chr5:106,587,839-106,772,024 CTD-2337D22 Signal on der(5)

50222 chr5:112,045,171-112,208,641 RP11-107C15 Signal deleted on der(5)

5022.2 chr5:112,460,936-112,667,499 RP11-467F22 Signal deleted on der(5)

59223 chr5:114,413,269-114,575,374 RP11-115D4 Signal deleted on der(5)

5023.1 chr5:116,078,687-116,097,905 RP11-249M12 Signal deleted on der(5)

59232 chr5:123,826,090-123,997,725 RP11-689H7 Signal deleted on der(5)

50233 chr5:126,087,655-126,112,178 RP11-434D11 Signal deleted on der(5)

50233 chr5:130,278,846-130,432,829 RP11-114H7 Signal deleted on der(5)

5g31.1 chr5:131,789,105-131,949,164 RP11-729C24 Signal deleted on der(5)

5g31.1 chr5:135,712,100-135,888,152 RP11-114H21 Signal deleted on der(5)

50312 chr5:137,829,080-137,832,903 LSI EGR1 Signal deleted on der(5)

50353 chr5:180,578,142-180,778,814 D552907 Signal deleted on der(5)
149322 chr14:98,088,984-98,162,995 RP11-76E12 Signal on der(14); no split signal
149322 chr14:100,070,893-100,092,077 RP11-543C4 Signal on der(2q); no split signal
1493233 Chr14:106,053,226- 106,518,932 LSI IGH Signal on der(2a); no split signal
15g15.1 chr15:41,796,423-41,967,115 RP11-380D11 Signal on der(15); no split signal
15921.1 chr15:45,625,708-45,826,511 RP11-519G16 Signal on der(15); no split signal
15921.1 chr15:46,258,718-46,459,407 RP11-31508 Signal on der(2), no split signal
15921.1 chr15:48,509,039-48,663,778 RP11-154J22 Signal on der(2), no split signal
15021.1 chr15:49,049,766-49,223,905 RP11-485010 Signal on der(2);no split signal
15021.1 chr15:49,896,865-50,081,728 RP11-353B9 Signal on der(2); no split signal
15g21.2 chr15:50,385,284-50,543,688 RP11-416K5 Signal on der(2); no split signal
15021.2 chr15:50,586,357-50,763,569 RP11-802B2 Signal on der(2); no split signal
150213 chr15:53,791,870-53,948,902 RP11-232J12 Signal on der(2); no split signal

defects would lead to progression towards AML or
5q- MDS [10].

Harrison et al., succeeded in establishing that patients
with 5q abnormalities (11/729) has a Hazard Ratio =3.75
(1-14, p=0.01) in relation to patients without these ab-
normalities, when studying the event free survival [1].
However, it was impossible to find similar statistical re-
sults in the other survival outcomes (disease free survival
and overall survival), possibly because of the small num-
ber of patients in this subgroup. Both COG protocols

and United Kingdom Medical Research Council Treat-
ment Trials AML 10 and 12 stratify these patients in the
high-risk arm what makes them candidates to allogeneic
bone marrow transplantation (BMT).

In another clinical study, Von Neuhoft et al., was unable
to demonstrate the worst prognostic implication of aberra-
tions in chromosome 5q (14/454) [4]. Although, it is not
possible to determine if this inability was also due to a small
number of patients. Patients with these types of cytogenetic
abnormalities are classified in AML-BFM 2012 protocols as
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an intermediate risk group, and are not primarily directed
to allogeneic BMT. Our patient was treated under the
above-mentioned protocol and, because of a late achieve-
ment of complete remission; he was posteriorly stratified to
high-risk group and submitted to BMT. Thus, if this un-
common breakpoint in 5q22 within complex karyotype has
a prognostic impact, more studies with a wide series of
AML cases should be performed to confirm our cytogen-
etic data.

Conclusion

Here, we described a case presenting an uncommon dele-
tion 5q22 associated with novel abnormalities involving
both chromosomes 2, revealed by MCB and BAC probes,
as defined: 46,XY,t(2;14)(q23;q32.2),t(2;15)(p23;q15),del(5)
(q22-qter) in a child that showed a very poor clinical re-
sponse to treatment. The knowledge of more complete de-
scriptions of such cases harboring 5q- abnormalities,
obtained through the application of molecular cytogenetic
approaches, are necessary to precisely stratify the risk of
this rare subgroup in childhood AML.

Consent

Written informed consent was obtained from the patient
for publication of this Case report and any accompany-
ing images. A copy of the written consent is available for
review by the Editor-in-Chief of this journal.
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