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Abstract

studied accessions of Ae. cylindrica.

Allopolyploidization

Background: Species belonging to the genus Aegilops L. are an important source of genetic material for expanding
genetic variability of wheat. Ae. triuncialis is an allotetraploid in this genus which was originated from hybridization
of Ae. umbellulata and Ae. markgrafii (Greuter) Hammer. Although the Ae. triuncialis karyotype was thoroughly
examined by conventional chromosome staining and Giemsa C-banding, it is still poorly characterized using FISH
markers. The objective of this study was to test the fluorescence in situ hybridization (FISH) patterns of Ae. triuncialis
(2n = 4x =28, C'C'U'UY chromosomes using different repetitive sequences and to compare the produced patterns
to the chromosomes of its diploid ancestors, with the aim of establishing a generalized Ae. triuncialis idiogram and
detection of Aegilops chromosomes in the background of wheat.

Results: The probes pSc119.2-1, pTa535-1, pAs1-1, (CTT);o and the 45S rDNA clone from wheat (pTa71) were hybridized
to chromosomes of Ae. triuncialis and compared with its diploid progenitors (Ae. umbellulata Zhuk, 2n = 2x =14, UU
and Ae. markgrafii (Greuter) Hammer, 2n = 2x = 14, CC) and Ae. cylindrica Host. (2n = 4x = 28, D*D“CCS), another
tetraploid species containing the C-genome. Ae. cylindrica was further analyzed by genomic in situ hybridization
(GISH) using C genome probe in order to identify any possible translocation.

Conclusions: In general, FISH patterns of the U~ and C'-genome chromosomes of Ae. triuncialis were similar to
those of U- and C-genome chromosomes of the diploid progenitor species Ae. umbellulata and Ae. markgrafii
respectively, although some differences were observed. Two major 45S rDNA loci were revealed in the short arm
of chromosomes A and C, of the C* genome which correspond to homoeologous groups 1 and 5 respectively.
Minor 455 rDNA loci were mapped on the short arm of chromosomes 1U" and 5U". GISH analysis revealed three
different non-reciprocal homologous or heterologous translocations between C© and D chromosomes in all
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Background

Species belonging to the genus Aegilops L. are an import-
ant source of genetic material for expanding genetic vari-
ability of cultivated bread wheat, Triticum aestivum L. em
Thell. (2n=6x=42, BBAADD) [1]. The genus Aegilops
comprises 11 diploid and 12 allopolyploid species [2] with
different types of nuclear and cytoplasmic genomes [3].
Ae. triuncialis is included in the section Aegilops together

* Correspondence: gh.mirzaghaderi@uok.ac.ir

'Department of Agronomy and Plant Breeding, Faculty of Agriculture,
University of Kurdistan, P. O. Box 66177-15175, Sanandaj, Iran

Full list of author information is available at the end of the article

( BioMed Central

with diploid Ae. umbellulata and several polyploid species
sharing the U-genome [2]. Ae. triuncialis is subdivided
into two subspecies, : ssp. triuncialis and ssp. persica,
which carry the same type of nuclear genome, but differ-
ent cytoplasmic genomes. Ae. triuncialis ssp. persica was
originated from hybridization of Ae. umbellulata as female
parent with Ae. markgrafii (Greuter) Hammer (syn. Ae.
caudata L.), whereas ssp. triuncialis arose from a recipro-
cal cross [4,5].

Many accessions of Ae. triuncialis are tolerant to biotic
and abiotic stresses. It has been exploited for a wide
range of traits including resistance to pests and diseases
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[6-14] and may harbor many other, yet unidentified
traits for wheat improvement.

Giemsa C-banding technique has been used to characterize
the genomes and chromosomes of wheat and Aegilops
species [15-17]. In particular C-banding has been employed
to examine genetic diversity and to construct the karyo-
types of Ae. umbellulata [18], Ae. markgrafii [19,20], Ae.
triuncialis [16] and Ae. cylindrica [15,21]. Fluorescence in
situ hybridization (FISH) using repetitive sequences as
probes is an alternative powerful technique for chromo-
some characterization.

Repetitive DNA sequences are major components of the
plant genome; in some species they can account for up to
90% of the genome size [22]. Dissimilarity of repetitive
DNAs may reflect evolutionary distances between species
and these repetitive DNA sequences account for the major
differences between genomes [23,24]. The chromosomal
localization of various repetitive DNA sequences, includ-
ing single sequence repeats (SSRs) such as (ACG), and
(GAA),, satellite sequences (pScl19.2, Afa family) and
ribosomal genes have been used to identify the chromo-
somes of wheat and its wild relatives [25-28]. Recently,
some new tandemly repeated sequences, such as pTa-535,
pTa-713, and pTa-86, were also isolated and tested as
FISH probes to identify wheat chromosomes [29]. The
hybridization patterns of pSc119.2, Afa family and rDNA
probes were described previously for diploid and polyploid
Aegilops species [16,30,31]. Some species, like Ae. umbel-
lulata [32], Ae. biuncialis [33], Ae. cylindrica [21] were
studied in more detail. These studies showed that combi-
nations of pSc119.2 and Afa probes in most species do not
permit the complete identification of all chromosomes,
because pSc119.2 probe hybridized mainly to subtelomeric
chromosome regions, while the Afaz family produces just
few signals on chromosomes of the S-genome group, T-,
U- and C-genomic species. To solve this problem some
authors [26,34,35] suggested to use two or three base-pair
synthetic oligo probes as diagnostic markers. These stud-
ies demonstrated that the GAA microsatellite is valuable
to identify chromosomes of the wheat A- and B-genomes.
The labeling patterns generated with this sequence in gen-
eral corresponded to the Giemsa N-banding patterns of
the respective chromosomes thus allowing linking the
FISH and Giemsa N- or C-banding analyses of wheat. The
GAA repeat was further used to characterize the chromo-
somes of some Aegilops species including Ae. biuncialis,
Ae. comosa and Ae. umbellulata [33].

The Ae. triuncialis karyotype was thoroughly examined
by conventional chromosome staining [36] and C-banding
[16], however it is still poorly characterized using FISH
markers. Although Badaeva et al. described the labeling
patterns of pSc119.2, pTa71, pTa794 DNA probes on Ae.
triuncialis chromosomes, their correlation with a pattern
of Giemsa staining was established only on the basis of
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chromosome morphology [16]. Morphological similarity
of many Ae. triuncialis chromosomes however can impede
their correct classification. Hence the main objective of
this study was to analyze the FISH patterns of Ae. triun-
cialis chromosomes using different repetitive sequences
and to compare the produced patterns to the chromo-
somes of its diploid ancestors, with the aim of establishing
a generalized Ae. triuncialis idiogram for facilitating the
accurate chromosome identification, tracing possible
chromosome changes over the course of evolution and de-
tection of Ae. triuncialis chromatin introgressed into
wheat. Another tetraploid Aegilops species carrying the
C-genome — Ae. cylindrica — was taken for the compari-
son of the C-genome chromosomes in a different genetic
background.

Results and discussion

To develop an informative combination of FISH markers
that allows precise identification of all Ae. triuncialis
chromosomes, the following combinations of probes
were tested: pScl119.2-1 + pTa535-1, pSc119.2-1 + pAsl-1,
pSc119.2-1 + (CTT); and pTa71.

Examination of two accessions each of diploid Ae.
umbellulata and Ae. markgrafii showed only few within-
species hybridization pattern polymorphisms, though
some minor differences were observed between Ae.
markgrafii accessions. All Ae. markgrafii, Ae. umbellu-
lata and Ae. triuncialis accessions analyzed showed
similar hybridization patterns with the probe pSc119.2-
1, which hybridized predominantly to the subtelomeric
regions of one or both arms of all chromosomes. Add-
itional interstitial signals were observed on the long arm
of chromosomes 6 and 7 of the U-genome and chromo-
somes F and G of the C-genome (Figure 1). Thus, these
chromosomes can be distinguished using pSc119.2-1
alone. However, the labeling pattern of Ae. triuncialis
chromosomes should be treated with care because few
minor changes in the position and signal intensity have
been recorded for some chromosomes. The most dis-
tinct changes were observed for chromosome G, which
lost a marker pSc119.2 site in the middle of the long
arm, but acquired an increased site in the telomeric re-
gion of the same arm (Figure 1).

Our result confirms previous observations that probe
pAsl is not informative for the identification of U- and
C-genome chromosomes [16,30,33], because it generates
only few weak signals on only some chromosomes of
these genomes. In situ hybridization using the (CTT)q
repeat allowed the identification of all seven chromo-
somes of Ae. markgrafii and Ae. umbellulata (Figure 1).
(CTT)yo hybridization patterns on Ae. triuncialis chro-
mosomes were comparable to those on the ancestral
species, however some minor differences were observed
in signal distribution and intensity (Figure 1). In particular,
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Ae. umbellulata

Ae. markgrafii

bottom of the figure with the related colour.

Ae. triuncialis

Figure 1 Representative karyotypes of Ae. umbellulata (accession S234), Ae. markgrafii (accession AE1418), Ae. triuncialis (accession
$197) and Ae. cylindrica after FISH with different repetitive DNA probes. The yellow signals on Ae. triuncialis chromosomes represent 455
rDNA with the sizes relevant to the intensity of produced signals. The probe combination on each genome chromosomes is presented at the

Ae. cylindrica

we revealed a significantly reduced number of hybridization
sites in the long arm of chromosome A, which possessed
profound signals in pericentromeric regions of short and
long arms and two weak telomeric sites. Another NOR-
bearing chromosome — C, carried large signals in proximal
region of both arms and a small site in subtelomeric region
of the long arm, whereas in the parental species we ob-
served numerous, relatively weak interstitial signals of the
same probe distribute over the length of the long arm. La-
beling of pericentromeric region of chromosome E was
much stronger in Ae. triuncialis than in Ae. caudata karyo-
type. By contrast, pericentromeric signals on chromosome
F were smaller in allotetraploid species as compared to the
diploid progenitor.

The (CTT),o hybridization pattern of Ae. markgrafii
and Ae. umbellulata chromosomes was similar with pre-
viously reported pattern on Ae. umbellulata chromo-
somes [33] and basically coincided with the position of
previously reported Giemsa C-bands [18,19]. Similarity
of the hybridization patterns on Ae. triuncialis chromo-
somes compared to Ae. markgrafii and Ae. umbellulata
indicates that the C- and U-genomes have not underwent

the significant structural changes relative to the parental
species.

FISH analysis using labeled 45S rDNA showed four
pairs of Ae. triuncialis chromosomes with rDNA signals
of different size (Figure 1). A suppression of nucleolar
organizing regions of the C-genome chromosomes in
Ae. triuncialis was suggested earlier by [37] based on
Ag-NOR staining and then by [16] based on FISH with
two rRNA gene families. Our results also confirm sup-
pression of 45S rRNA gene loci on one of the parental
genome of Ae. triuncialis, however, with the use of gen-
omic in situ hybridization (GISH) followed by FISH with
pTa71 probe we showed that two major loci are located
in the short arm of the C-genome chromosomes A and
C, but not on the chromosomes A (1C") and 5U", as was
suggested in [16]. The discrepancies in classification of
NOR-bearing chromosome 5 can be due to the fact that
in a previous paper the genome affinity of chromosomes
was determined by their morphology and therefore
should be considered as tentative. Two minor NOR clus-
ters are located in the short arms of chromosomes 1U*
and 5U". The signal size decreased in the order A(1C") > C
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(5C" >5U">1U" (Figure 1). Differences in signal size on
chromosomes 1U" and 5U" observed in our study compared
to the previous one can be due to intraspecific polymorph-
ism as we used different accessions of Ae. triuncialis.

Each of the diploid species Ae. markgrafii and Ae.
umbellulata carries two pairs of NOR-bearing chromo-
somes that were identified as chromosomes A = 1C and
C=5C in Ae. markgrafii and 1U and 5U in Ae. umbellu-
lata, respectively. FISH analysis suggests that in Ae.
triuncialis elimination of most of the rRNA gene copies
occurred from the U' genome of Ae. umbellulata
(Figure 1). A similar loss of 45S rRNA genes occurred in
the A/A" genome of Triticum turgidum and T. timopheevii
[38] after allopolyploidization.

A mitotic metaphase cell of the F; hybrid T. aestivum
cv  ‘Zarin’-Ae. triuncialis (n=5x=35, genomically
BADU'C") after FISH using pSc119.2-1 and pTa535-1 as
probe combination is shown in Figure 2E. All A-, B- and
D-genome chromosomes of wheat can be identified by
their characteristic repetitive sequences patterns, arm ra-
tios and chromosome sizes. A 5B:7B translocation was
identified in the background ‘Zarin’ (Figure 2E). All U'-
and C'-genome chromosomes of Ae. triuncialis can be
identified, however a combination of pSc119.2-1 and
(CTT);0 probes proves to be most useful for the identifica-
tion of all individual Ae. triuncialis chromosomes in wheat
background (Figure 2F) because pTa535-1 probe does pro-
duce only few signals on the C' or U* chromosomes.

So far, the homoeologous relationship of only three
chromosomes of Ae. markgrafii has been established.
Analysis of the chromosome substitution lines A (1C), C
(5C) [19] and B (2C) [39] indicated that the chromo-
somes A, B and C should be assigned to homoeologous
groups 1, 2 and 5 of wheat, respectively. The Ae. mark-
grafii chromosomes - D, E, F, and G showed homoeology
to more than one group, based on isozyme [40] and re-
striction fragment length polymorphisms (RFLP) [20,41]
analyses. Structural rearrangements of the U-genome
chromosomes of Ae. umbellulata have been earlier de-
duced based on comparative chromosome mapping [42].
That is why both Ae. markgrafii and Ae. umbellulata
have highly asymmetrical karyotypes, compared to the
more symmetrical karyotypes of the other diploid spe-
cies of this genus [36].

The C-genome is also present in another tetraploid
Aegilops species with a different genome constitution,
Ae. cylindrica (D°DC°C®) [43]. Ae. triuncialis and Ae.
¢ylindrica is suggested to evolve rather recently with
only few modifications of the parental genomes [44]. To
find possible changes of the C-genome due to polyploi-
dization, we included Ae. cylindrica into the analysis
of the C-genome evolution. The pattern produced by
the (CTT),o repeat on C°-genome chromosomes of Ae.
¢ylindrica was more similar to that in the ancestral
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species Ae. markgrafii than the C'-genome chromo-
somes of Ae. triuncialis. However, three different non-
reciprocal homologous or heterologous translocations
between C° and D°- genome chromosomes where ob-
served in all the studied accessions of this species. Thus,
Ae. cylindrica accession S376 carried an intergenomic
translocation (Additional file 1: Figure S1) and the Ae.
cylindrica ecotype consisted of genotypes with two dif-
ferent translocations (Figure 2D and Additional file 1:
Figure S1). Reciprocal translocations between C° and D¢
chromosomes have been reported in this species previ-
ously [21]. Sequential FISH and GISH showed that the
breakpoints were mainly located near the (CTT)q
hybridization sites. Similar relationship between interge-
nomic translocation breakpoints and SSR-rich chromo-
somal regions in the allopolyploid species has been
reported by other authors [33] which suggests that SSR
DNA sequences might facilitate the formation of chromo-
somal rearrangements. Frequent incidence of reciprocal
and non-reciprocal translocations can be an indicative of
an extensive speciation process in this relatively new allo-
polyploid species. A more recent origin of Ae. cylindrica
than Ae. triuncialis can also be presumed based on the
higher similarity of the C-genome chromosomes with the
C-genome chromosomes of diploid Ae. markgrafii as
compared to the C'-genome of Ae. triuncialis. We could
hardly discriminate the C' and U* genome chromosomes
of Ae. triuncialis (accession S197) by GISH using Ae.
markgrafii as probe (Figure 2A and B). This can be due to
very close evolutionary relationships of these genomes
which share many repetitive sequences [44] thus preclud-
ing their discrimination. No intergenomic translocations
was detected in the accessions of Ae. triuncialis used.

Conclusion

In conclusion, FISH patterns of the U'- and C'-genome
chromosomes of Ae. triuncialis using different repetitive
were similar to those of U- and C-genome chromosomes
of the diploid progenitor species Ae. umbellulata and
Ae. markgrafii respectively, although some differences
were observed. In situ hybridization using the (CTT)q
repeat allowed the identification of all chromosomes of
Ae. triuncialis and its diploid ancestors Ae. markgrafii
and Ae. umbellulata. Ae. triuncialis chromosomes could
also be identified in the background of bread wheat.
GISH analysis revealed different non-reciprocal homolo-
gous or heterologous translocations between C° and D¢
chromosomes in the studied accessions of Ae. cylindrica.

Methods

Plant materials

Two accessions of Ae. markgrafii (AE1418, AE1082),
two accessions of Ae. umbellulata (S147, S234), three
accessions of Ae. triuncialis (S101, S146, S197), and one
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Figure 2 FISH and GISH patterns of Ae. triuncialis, Ae. cylindrica and F, hybrids derived from wheat and Ae. triuncialis crosses. A: FISH
signals from oligonucleotide probes pAS1-1 (FAM 5" labeled), pSc119.2-1 (Tamra labelled) on the Ae. triuncialis (accession $197); B: Re-probing on
the same preparation using Ae. markgrafii genomic DNA (red signals) and pTa71 clone (green signals); C: FISH signals from oligonucleotide probes

(accession S101). Bar=10 ym.

pSc119.2-1 (FAM 5' labeled), pTa535-1 (Tamra labelled) and (CTT),o (Cy3 labelled) on the Ae. cylindrica ecotype. Just signals of (CTT);o (mainly

on C° chromosomes) and pSc119.2-1 are presented in this picture. Using Texas Red filter, pTa535-1 signal was observed and identified D
chromosomes which are presented in Figure 1; D: Re-probing on the same preparation using Ae. markgrafii genomic DNA (red signals) and pTa71
clone (green signals) which shows unbalanced translocation on chromosome pair 1D and 3C. The translocation on 3C is heterologous; E: FISH
pattern of repetitive oligonucleotide probes pSc119.2-1 (FAM 5' labelled), pTa535-1 (Tamra labelled) on mitotic metaphase chromosomes of a
derived Fy hybrid T. aestivum cv "Zarin’- Ae. triuncialis (accession S101); F: FISH pattern of repetitive oligonucleotide probes pSc119.2-1 (FAM

5" labelled) and (CTT);, (Cy3 labelled) on mitotic metaphase chromosomes of a derived F; hybrid T. gestivum cv ‘Pishgam’- Ae. triuncialis

accession (S376) and one ecotype (collected in the Kur-
distan province, Iran) of Ae. cylindrica, were examined.
The Ae. markgrafii accessions were obtained from the
germplasm collections of the IPK, Germany and other
accessions are maintained in the Research Institute of
Forests and Rangelands (RIFR) of Iran. T. aestivum culti-
vars ‘Zarin’ and ‘Pishgam’ were crossed with Ae. triun-
cialis (accession S101) and the resulted F; seeds were
used for identification of Ae. triuncialis chromosomes in
the background of wheat.

DNA probes

The 5" with 6-carboxyfluorescein (6-FAM) or 6-carboxy
tetramethylrhodamine (Tamra) end-labelled oligo probes
oligo-pAsl-1 (Tamra-5'-CCT TTC TGA CTT CAT TTG
TTA TTT TTC ATG CAT TTA CTA ATT ATT TTG
AGC TAT AAG AC-3’), oligo-pSc119.2-1 (6-FAM-5'-
CCG TTT TGT GGA CTA TTA CTC ACC GCT TTG
GGG TCC CAT AGC TAT-3') and oligo-pTa535-1
(Tamra-5"-AAA AAC TTG ACG CAC GTC ACG TAC
AAA TTG GAC AAA CTC TTT CGG AGT ATC AGG
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GTT TC-3") [29,45] were synthesized by MWG (Germany).
The oligo (CTT);q probe was directly labelled with 5/6
sulforhodamine 101PEG3_azide by click chemistry (Base-
click). The plasmid pTA71 containing the 45S rDNA re-
peat from wheat was directly labelled by nick translation
and used to detect the NORs.

FISH and GISH

Root tips were pretreated with ice cold water for 24 h
and were then fixed in ethanol-glacial acetic acid (3:1).
Mitotic chromosome spreads were prepared using drop-
ping technique. FISH was carried out according to [33].
After documentation of the FISH signals, some of
the preparations were rehybridized to detect the 45S
rDNA sites or the parental genomes by genomic in situ
hybridization (GISH).

GISH was carried out after FISH on the same prepara-
tions. Therefore, total Ae. markgrafii genomic DNA was
labelled with Atto-550 11-dUTP by nick translation, and
used as a probe to detect the C-genome chromosomes
of Ae. triuncialis and Ae. cylindrica. Unlabelled, frag-
mented wheat DNA was used as blocking DNA at 60
times the quantity.

Additional file

Additional file 1: Figure S1. A GISH using labelled Ae. markgrafii
genomic DNA on a mitotic metaphase cell of the Ae. cylindrica ecotype
showing unbalanced intergenomic translocations on two pairs of
chromosomes. The red labelling is the GISH with the C genome, and the
green is the rDNA loci. This ecotype consisted of genotypes with two
different translocations. The other one is shown in Figure 2D; B: Ae.
cylindrica accession S376 showed an unbalanced intergenomic
translocation on one pair of chromosomes. Bar = 10 um.
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