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Abstract

Background: Multiple myeloma is an incurable disease. Little is known about the genetic and molecular
mechanisms governing the pathogenesis of multiple myeloma. The risk of multiple myeloma predispositions varies
among different ethnicities. More than 50% of myeloma cases showed normal karyotypes with conventional
cytogenetic analysis due to the low mitotic activity and content of plasma cells in the bone marrow. In the present
study, high resolution array comparative genomic hybridization technique was used to identify copy number
aberrations in 63 multiple myeloma patients of Malaysia.

Results: Copy number aberrations were identified in 100% of patients analyzed (n = 63). Common chromosomal
gains were detected at regions 1q, 2q, 3p, 3q, 4q, 5q, 6q, 8q, 9q, 10q, 11q, 13q, 14q, 15q, 21q and Xq while
common chromosomal losses were identified at regions 3q and 14q. There were a total of 25 and 5 genes
localized within the regions of copy number gains and losses, respectively (>30% penetrance). The LYST, CLK1,
ACSL1 and NFKBIA are genes localized within the copy number aberration regions and they represent novel
information that has never been previously described in multiple myeloma patients.

Conclusions: In general, due to the differences in genetic background, dietary and lifestyle practices of Malaysian
compared to the Caucasian population, these chromosomal alterations might be unique for Asian MM patients.
Genes identified in this study could be potential molecular therapeutic targets for the treatment and management
of patients with multiple myeloma.
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Background
Multiple myeloma (MM) is a hematologic cancer, which is
characterized by excessive numbers of malignant plasma
cells in the bone marrow and over-abundance of monoclo-
nal immunoglobulin or Bence-Jones protein (free mono-
clonal light chains). Globally, MM has an incidence rate of
102,000 and death rate of 72,000 people per year [1]. In
Malaysia, more than 50% of myeloma patients were diag-
nosed at stage IV of the disease based on clinical staging
system and it is more prevalent in men than women [2].
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Multiple myeloma is an incurable disease and, little is
known about the genetic and molecular mechanism gov-
erning its pathogenesis [3]. Genes localized to the copy
number change regions are often a target of mutation
and involved in tumorigenesis of hematological malig-
nancies [4-6].
Various regions of chromosomal copy number aberra-

tions have been described in MM including the deletions
of 1p, 6q, 8p, 13q, 16q, 17p and 22q and gains of 1q, 6p,
9q, 11q, 12q, 15q, 17q, and 19q [7-12]. The most frequent
chromosomal abnormality is partial or total loss of
chromosome 13, which is found in approximately 50% of
myeloma cases [13-17]. Apart from chromosome 13, gen-
omic aberration of chromosome 1 is associated with a
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poor prognosis and it is described in up to 45% of patients
with MM [18,19]. Short arm of chromosome 1 is com-
monly deleted, whereas the long arm tends to be amplified
in MM [20].
Chromosomal abnormalities have gradually become an

important prognostic factor in MM. However, more than
50% of myeloma cases showed normal karyotypes with
conventional cytogenetic analysis due to the low mitotic
activity and content of plasma cells in the bone marrow
[21,22]. Array Comparative Genomic Hybridization (array
CGH) is a more advanced molecular cytogenetic tech-
nique, which allows genome-wide screening of chromo-
somal alterations in a single experiment. It does not rely
on metaphase spreads for analysis and is a more appropri-
ate tool for copy number analysis of slow proliferating
tumor cells such as MM.
Moreover, risk of multiple myeloma predispositions

varies among different ethnicities [23]. This suggests
that the genetic factors in Asian might be different from
the Caucasian population. This is the first report on the
copy number aberrations of Malaysian multiple mye-
loma patients. Information obtained in this study pro-
vides a better understanding on the chromosomal copy
number changes in Asian compared to the Caucasian
population.

Results
Copy number aberrations were found in 100% of
MM patients
The presence of copy number changes in 63 MM patients
were analyzed by array CGH. Copy number changes were
identified in 100% of the cases studied (n = 63). This fre-
quency is consistent with the report of Largo and co-
workers in 2007 [24]. The present findings showed that
chromosomal gain is more common than deletion, and
q-arm is more frequently altered than p-arm in the MM
patients. Common chromosomal gains were identified
at regions 1q, 2q, 3p, 3q, 4q, 5q, 6q, 8q, 9q, 10q, 11q,
13q, 14q, 15q, 21q and Xq while common chromosomal
losses were identified at regions 3q and 14q. Figure 1
showed the common chromosomal aberrations and per-
centage of penetrance in all samples studied (>30%).
There were 25 and 5 genes localized within the regions
of copy number gains and losses, respectively (Figure 1).
The aberration fragment sizes ranged from approxi-
mately 1.50 kb-0.23 Mb. An additional file shows this in
more detail (see Additional file 1: Table S1).

Copy number aberrations at chromosomes 1q42.3 and
7q22.3 were confirmed by qPCR
Copy number gains at chromosomes 1q42.3 and 7q22.3
were verified by TaqMan Copy Number Assay (Applied
Biosystems). Nine out of 10 samples showed copy number
gain at chromosome 1q42.3 except M24 which was 2.31
copies (Figure 2A). Apart from that, copy number gain at
chromosome 7q22.3 was identified in 9 out of 10 samples
except M07 which was 2.42 copies (Figure 2B). Although
M24 and M07 were not called as significantly gains but
their copy numbers were very close to 2.50. The Ct values
detected by qPCR were lower in all samples if compared
to the array CGH. Since the platforms and logarithms
used in qPCR and array CGH were different, slight differ-
ence in calculated copy number is expected. This might
explain for the lower copy numbers for M24 and M07
which did not pass the threshold set for copy number
change by the software. Six samples without copy number
alteration at these regions in array CGH were also negative
in qPCR. They were M38, M56 and M102 for chromo-
some 1q42.3 and M49, M47 and M56 for chromosome
7q22.3 (Figures 2A and B).

Discussion
Chromosomal copy number changes were identified in
100% of MM patients studied, which suggests the import-
ance of genomic imbalances in myeloma pathogenesis.
Only 2 out of 63 patients showed clonal genomic abnor-
malities at diagnosis by conventional G-banded karyotype
analysis. These findings supported the fact that array CGH
is a more powerful molecular cytogenetic technique com-
pared to conventional G-banded karyotype analysis. Array
CGH does not rely on metaphase spreads for analysis and
its increased sensitivity enables the identification of rela-
tively small amplification and deletion in the chromosome.
In this study, several genes localized within the copy num-
ber change regions were revealed. These genes might rep-
resent novel candidate targets involved in the pathogenesis
of MM.
The expression of the candidate genes at mRNA level

has not been evaluated in this study. To further validate
the copy number changes in association with gene expres-
sion, candidate genes identified in the present study were
compared to the Oncomine gene expression database.
Four genes localized within the copy number gain regions
were significantly over-expressed at mRNA level in two
published datasets on multiple myeloma patients vs nor-
mal controls (p < 0.05) [25,26]. They are NAMPT, LAMP2,
SOD2 and N4BP2L2.
Nicotinamide phosphoribosyltransferase (NAMPT) is

localized at chromosome 7q22.3 and this aberration
region is detected in 92% of MM patients. NAMPT also
known as pre-B colony enhancing factor (PBEF) or visfatin
can function as a growth factor, cytokine and nicotinamide
phosphoribosyltransferase [27-29]. Elevated expression of
NAMPT has been implicated in MM and cancers of the
prostate, brain, colon and rectum [30-33]. Over-expression
of NAMPT is believed to activate nicotinamide adenine
dinucleotide (NAD) salvage pathway and raise NAD+ level
to provide sufficient energy for the survival of rapidly



Figure 1 Common copy number aberrations and percentage of penetrance in 63 MM samples analyzed. Genes localized within the copy
number aberration regions were identified (>30% penetrance). Copy number gains were indicated in red while copy number losses were
indicated in green
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proliferating cancer cells. Importantly, a small molecule
compound inhibitor of NAMPT, FK866 or APO866, was
capable of triggering cytotoxicity in myeloma cells both
in vitro and in vivo [30]. The discovery of FK866/APO866
has opened up the prospect of trailing novel targeted
therapies for patients with MM. To date, FK866/APO866
has been proven as a promising anti-cancer agent in pre-
clinical cancer model. Recent study shown that cytotoxic
effect of FK866/APO866 is caused by autophagy rather
than apoptosis [30]. Since the cytotoxic effect is activated
upon successful binding between NAMPT and FK866/
APO866, the utilization of FK866/APO866 as an anti-
cancer agent has its limitation. For example, mutation at
NAMPT binding domain inhibits FK866/APO866 from
binding and consequences in drug resistance in the patient
[34,35]. Therefore, new biomarkers targeting NAMPT/
NAD salvage pathway are urgently needed for patients
who do not benefit from FK866/APO866 therapy.
Copy number gain at chromosome segment Xq24,

which coded for lysosomal associated membrane protein 2
(LAMP2) is identified in 49% of MM patients in this
study. This gene functions, in part, in maintaining the
integrity of the lysosomal membrane in cells [36-39].
De-regulation of LAMP2 was detected in acute myeloid
leukemia (AML) [40]. Lysosomes in leukemic cells tend to
be larger than those in normal cells. Thus, lysosomal mass
and biogenesis are increased in AML to generate more
amino acids and nucleotides for cell proliferation. Viability
of leukemic cells is decreased upon knockdown of LAMP2
gene [41]. This observation suggests that elevated expres-
sion of LAMP2 might disrupt lysosomal membrane integ-
rity, structure and size. Nevertheless, the effect of gene
knockdown in MM is still uncertain. Further understanding
of the functions of LAMP2 and its pathways in myeloma
pathogenesis is important to elucidate whether lysosomal
disruption could be a novel therapeutic strategy for the
treatment of MM patients with LAMP2 over-expression
and lysosomal abnormalities.
Superoxide dismutase 2 (SOD2) gene which localized at

chromosome 6q25.3 was found to have copy number gain
in 44% of MM cases. The SOD2 protein binds to the
superoxide by products of oxidative phosphorylation and



Figure 2 Copy number profiles of selected genes in MM samples. (A) Copy number profile for LYST gene, located at chromosome 1q42.3.
Two copies of target were detected in negative samples (M38, M102 and M56). (B) Copy number profile for NAMPT gene, located at
chromosome 7q22.3. Two copies of target were detected in negative samples (M47, M49 and M56). Two copies of target were detected in
peripheral blood from normal individual (A15). Each sample bar represented the mean calculated copy number for three sample replicates with
an error bar showing the standard deviation.
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converts them to hydrogen peroxide and diatomic
oxygen. Oxidative stress is an important factor in the
pathogenesis of cancerous cells. The SOD2 gene ex-
pression level was decreased in tumor cells and in-
creased in aggressive tumor [41]. Mutation in SOD2
gene has been described in breast carcinoma and muta-
tion or methylation at the promoter region of SOD2
gene is shown to down-regulate manganese superoxide
dismutase (MnSOD), a putative tumor suppressor in
cancer cells [41,42]. If MnSOD is a tumor suppressor
gene, tumor growth could be suppressed by restoring
the expression of MnSOD in the cancerous cells. In
contrast, in aggressive tumor, a high level of MnSOD is
associated with NF-κB activation and this causes the
decreased sensitivity of the tumor cells to chemother-
apy and radiotherapy [43]. Under these circumstances,
SOD2 does not act as a tumor suppressor gene. How
over-expression of SOD2 impacts on tumor cells sur-
vival in advanced cancer is not well understood and
needs further investigation.
On the other hand, the role of NEDD4 binding protein

2-like 2 (N4BP2L2) in the pathogenesis of MM is still
unknown although it was over-expressed in MM. Never-
theless, copy number gain at chromosome 13q13.1
where N4BP2L2 is localized was found in 52% of MM
patient in this study. The percentage of penetrance is
quite high and this gene is worth further experimental
investigation in the future.
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SAMSN1 and PICALM are two potential genes local-
ized within the copy number change regions at chromo-
somes 21q11.2 and 11q14.21, respectively. Both of these
copy number gain regions were identified in >70% of MM
cases studied. This finding is consistent with the copy
number variations datasets reported by Dickens et al. in
Oncomine database [44]. The SAMSN1 has been reported
to be highly expressed in various human malignancies in-
cluding myeloma, acute myeloid leukemia, and lymphoma
[45,46]. It can be up-regulated when mediated by B cell
activators such as IL-4, CD40L, and anti–immunoglobulin
(Ig)M. The induction of SAMSN1 by IL-4 involves mul-
tiple signalling cascades including activation of Stat6, PI 3-
kinase, PKC kinases, and NF-κB [45]. By knocking down
SAMSN1 in lymphoma cell line did not affect the cancer
cell proliferation [45]. Therefore, it is suggests that
SAMSN1 is most likely participant in B cell activation and
differentiation instead of proliferation. In MM, alteration
in SAMSN1 might disturb the normal B cell differenti-
ation process and eventually lead to the development of
abnormal plasmablasts or plasma cells. The differentiation
of B cells into immunoglobulin-secreting plasma cells is a
complex process which undergoes a series of signalling
pathways including extracellular signal-regulated kinase
(ERK) signalling pathway. Unfortunately, the understanding
of the actual mechanisms underlying the B cell differenti-
ation process is still in its infancy. The role of SAMSN1
gene in B cell activation and differentiation and how its al-
teration could possibly trigger the development and clonal
expansion of malignant plasma cells is a key question that
remains to be investigated.
Gain of chromosome 11q14-q25 is a frequent event in

MM [9,47]. The phosphatidylinositol binding clathrin as-
sembly protein (PICALM) is localized in this region. In
2006, Largo and co-workers had reported the over-
expression of the PICALM transcript and the amplification
of its corresponding genomic region in MM cell lines by
using microarray technology [48]. Its over-expression was
confirmed in MM cell lines but not in the patient sample.
The role of PICALM has been implicated in endocytosis,
transcriptional regulation, iron homeostasis and cell prolif-
eration. In addition, structural chromosomal abnormality
involving genetic locus where PICALM is localized has
been implicated in human hematopoietic malignancies
such as leukemia and lymphomas [49-51]. Example include
translocation involving PICALM and AF10 (10p12) or
MLL (11q23) which resulted in fusion genes PICALM-
AF10 or PICALM-MLL. PICALM rearrangements confer
growth advantage by impairing endocytosis, with conse-
quent up-regulation of its surface expression [52-55].
PICALM fusion protein has not been detected in MM. It
has been shown that modulation of PICALM expression
affects the intracellular iron level [56]. Therefore, it is
worthy to investigate whether PICALM over-expression
would enhance cell proliferation by boosting iron uptake in
myeloma patients. It is important to determine whether
iron chelation is a potential novel therapy for myeloma
patients with high expression of PICALM and iron levels.
Information on the role of SAMSN1 and PICALM in

human malignancies as discuss above had highlighted the
importance of these genes in cancer genetics although
there is no evidence showing that they are over-expressed
at the mRNA level of MM patients. They are still worth
further exploration since more than 70% of MM cases
studied showed copy number gains at these regions.
Chromosomal segments containing genes such as LYST,

CLK1, ACSL1 and NFKB1A were amplified in more than
40% of myeloma patients in this study. Information about
these genes is very limited and all of them have not been
previously described in association with MM pathogenesis.
More studies need to be carried out to validate the function
of these genes in MM predisposition. Interestingly, most of
the genes identified in the common aberration regions are
linked to each other via several signalling pathways such as
MAPK1, NFKBI, RELA, IFNG and TNF (Figure 3).

Conclusions
To sum up, the development of malignant plasma cells is
caused by the genetic defects within the tumor and the
interaction between myeloma cells and the bone marrow
micro-environment. Cytotoxic resistance of myeloma cells
occurred when a cascade of signalling pathways are acti-
vated upon the interaction of the cells with the bone mar-
row micro-environment. To avoid drug resistance and to
achieve long term remission, identification of new bio-
markers and novel therapeutic targets is urgently needed
to improve the treatment of MM patients.
This is the first report on the identification of chromo-

somal abnormalities in MM patients of Malaysia. The
present study generated useful information on the genomic
imbalances of MM patients of Malaysia. The LYST, CLK1,
ACSL1 and NFKBIA are genes localized within the copy
number aberration regions and they represent novel infor-
mation that have never been previously described in MM.
Due to the differences in genetic background, dietary and
lifestyle practices of Malaysian compared to the Caucasian
population, these chromosomal alterations might be unique
for Asian MM patients. Genes identified in this study could
be potential molecular therapeutic targets for the treatment
and management of patients with MM.
Future work aims to investigate the mRNA expression

level of the genes found by array CGH using CD138+
enriched MM cells from the bone marrow. It would be of
great interest to further explore the function of these
genes by using in vitro or in vivo models. This will help to
improve our understanding on the molecular pathogenesis
of MM and eventually lead to the development of molecu-
larly targeted therapy for treating MM patients.



Figure 3 Genetic networks and pathways between genes identified by array CGH analysis.

Table 1 Characteristics of 63 multiple myeloma patients

Parameter at diagnosis No. of patients (%)

Gender

Male 34 (53.97)

Female 29 (46.03)

Age (years)

≤55 27 (42.86)

>55 36 (57.14)

Ethnic

Malay 36 (57.14)

Chinese 14 (22.22)

Indian 13 (20.63)

Karyotype (G-band)

Abnormala 2 (3.17)

Normal 37 (58.73)

Unknownb 24 (38.10)
aMultiple chromosomal abnormalities were seen with karyotyping.
bInsufficient/ short/ no chromosome spread were available for cytogenetic analysis.
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Methods
Specimen and DNA preparation
Archival fixed bone marrow cell suspensions from cyto-
genetic analysis of 63 MM patients, diagnosed from year
2007-2010, were subjected for DNA isolation using the
Qiagen DNA mini kit. Samples which yielded high qual-
ity and sufficient DNA were used and only newly diag-
nosed patients with plasma cell infiltration >10% were
included in this study. The age of these patients ranged
between 15-77 years with a mean and median age of 57
and 58 years, respectively. This study had been approved
by the Medical Research & Ethics Committee (MREC),
Ministry of Health, Malaysia. Informed consent was ob-
tained from all patients for being included in the study.
Patient characteristics are summarized in Table 1.
Reference DNAs were extracted from peripheral blood

of healthy individuals. Only peripheral blood of individ-
uals with normal full blood count was used. Reference
DNAs were divided into 6 groups (Malay male, Malay
female, Chinese male, Chinese female, Indian male and
Indian female). Ten healthy individuals of specific gen-
der and ethnicity were pooled in each group. The mean
age for each reference group was as follows: Malay male,
47 years; Malay female, 34 years; Chinese male, 45 years;
Chinese female, 41 years; Indian male, 48 years and
Indian female, 34 years.
The quality of genomic DNA was checked on 1% de-

naturing agarose gel whereas purity and concentration
were determined by using the NanoDrop ND-1000 UV–
VIS spectrophotometer.

Oligonucleotide array CGH
A total of 1.5 μg of Cyanine 5-dUTP-labeled test DNA
and equal amount of Cyanine 3-dUTP-labeled reference
DNA were mixed and used for hybridization. Reference
DNAs, which matched with the patient’s gender and
ethnic group were used. The mixture was then hybridized
onto Human Genome CGH Microarray Kit 244 k in the
presence of Cot-1 DNA (Invitrogen) for 40 h at 65°C
following Agilent’s standard processing recommendations.
Slides were washed (Wash Procedure B) and scanned with
Agilent array scanner G2505C. Microarray images were
scanned and Agilent Feature Extraction Software Version
10.7.3.1 was used to extract data from raw microarray
image files in preparation for analysis.

Data analysis
Agilent DNA Analytics software (v4.0) was used to
visualize, detect and analyze aberration patterns from
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CGH microarray profiles. All microarray data were ana-
lyzed according to the human reference genome assembly
hg18. Aberrations were detected with the ADM2 algo-
rithm and the filtering option of a minimum of 3 probes
and minimum average absolute log2 ratio of 0.3, with max-
imum aberration of 100 probes. Data were analyzed with
bin size 10 and threshold 6.0. Data was filtered at a mini-
mum of 3 probes and 30% or over for probe penetrance
analysis. Common aberrations were performed with t-test;
P threshold 0.05, overlap threshold 0.9. Aberration seg-
ments were individually reviewed with Ensembl genome
browser 54. The microarray data have been submitted to
the Gene Expression Omnibus (GEO) and assigned with
an accession number GSE44745.

q-PCR verification for copy number aberration
Two genomic copy number gains found by array CGH ana-
lysis were selected for verification by using TaqMan Copy
Number Assay (Applied Biosystems). They were located at
chromosome 1q42.3 and chromosome 7q22.3, at the mo-
lecular regions where LYST and NAMPT genes were local-
ized, respectively. Copy number for chromosome 1q42.3
was assessed with specific TaqMan Copy Number Assay
(Hs05736121_cn; Applied Biosystems). Probe and primers
for chromosome 7q22.3 were custom designed as follow-
ing: probe CATGATGTTACTACTTTGAAATAACC, for-
ward primer CCTAAAGAAGATATTATCCTTGTCCTC
CGTAT and reverse primer CATAGTATGCACATATTAG
ACTCTTCGTTGA. TaqMan Copy Number Reference
Assay TERT (Applied Biosystems) was used as endogenous
control.
Ten samples with copy number gains by > log20.3 at

chromosome segments 1q42.3 or 7q22.3 in array CGH
were selected for q-PCR verification. Three MM samples
with no amplification at these regions were selected as
normal controls. The DNAs from normal peripheral blood
designed as A15 were used as normal control in this assay.
Each sample of 20 ng genomic DNA was prepared in trip-
licate containing TaqMan Universal Genotyping Master
Mix, a FAM® dye-labeled TaqMan® Copy Number Assay
and a VIC® dye-labeled TaqMan® Copy Number Reference
Assay. All qPCR reactions were run on an ABI 7500 Fast
Real-time PCR System (Applied Biosystems) in 96-well
format and thermal cycling conditions were 95°C, 10 min
followed by 40 cycles of 95°C for 15 s and 60°C for 1 min.
The TERT reference gene served as endogenous control
in which it is always present in two copies in a diploid
genome, regardless of the copy number of the targeted of
interest. It is used to normalize sample input and
minimize the variation between the sample and normal
control. The relative quantification analysis was then per-
formed by CopyCaller software v1.0 (Applied Biosystems)
in which 1.5 > Copy number > 2.5 will be called as having
copy number change.
Additional file

Additional file 1: Table S1. Summary of chromosomal copy number
changes in 63 multiple myeloma patients. This table lists out all the
chromosomal aberration regions identified in the current study (>30%
penetrance) together with their molecular regions, percentage of
penetrance and genes localized within the copy number aberration regions.
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