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Abstract

Background: Down syndrome (DS), characterized by an extra free chromosome 21 is the most common genetic
cause for congenital malformations and learning disability. It is well known that the extra chromosome 21
originates from the mother in more than 90% of cases, the incidence increases with maternal age and there is a
high recurrence in young women. In a previous report we have presented data to indicate that maternal trisomy
21 (T21) ovarian mosaicism might provide the major causative factor underlying these patterns of DS inheritance.
One important outstanding question concerns the reason why the extra chromosome 21 in DS rarely originates
from the father, i.e. in less than 10% of T21 DS cases. We here report data indicating that one reason for this
parental sex difference is a very much lower degree of fetal testicular in comparison to ovarian T21 mosaicism.

Results: We used fluorescence in situ hybridisation (FISH) with two chromosome 21-specific probes to determine
the copy number of chromosome 21 in fetal testicular cell nuclei from four male fetuses, following termination of
pregnancy for a non-medical/social reason at gestational age 14-19 weeks. The cells studied were selected on the
basis of their morphology alone, pending immunological specification of the relevant cell types. We could not
detect any indication of testicular T21 mosaicism in any of these four male fetuses, when analysing at least 2000
cells per case (range 2038-3971, total 11.842). This result is highly statistically significant (p < 0.001) in comparison
to the average of 0.54% ovarian T21 mosaicism (range 0.20-0.88%) that we identified in eight female fetuses
analysing a total of 12.634 cells, as documented in a previous report in this journal.

Conclusion: Based on these observations we suggest that there is a significant sex difference in degrees of fetal
germ line T21 mosaicism. Thus, it would appear that most female fetuses are T21 ovarian mosaics, while in sharp
contrast most male fetuses may be either very low grade T21 testicular mosaics or they may be non-mosaics. We
further propose that this sex difference in germ line T21 mosaicism may explain the much less frequent paternal
origin of T21 DS than maternal. The mechanisms underlying the DS cases, where the extra chromosome 21 does
originate from the father, remains unknown and further studies in this respect are required.

Background

It is now just about 50 years since the genetic back-
ground for Down syndrome (DS) was identified [1-3]
with the most common reason being an extra free chro-
mosome 21, trisomy 21 (T21). Long before then Penrose
(as well as some other authors) had suggested that the
condition could be caused by a chromosome abnormal-
ity; and at the same time he documented a strong
maternal age effect with an increasing incidence of DS
births to mothers at later reproductive ages [4,5].
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Remarkably, a couple of years before the confirmation
of the true chromosomal background he also identified
a biomarker for germ line and somatic chromosomal
mosaicism (the typical dermatopglyphics) in parents and
sibs [6]. In the interim it has become clear, primarily by
family linkage studies tracing DNA markers along the
length of chromosome 21q between parents and chil-
dren in DS families that the majority of T21 DS cases
inherit the extra chromosome 21 from their mother
(more than 90%) while in only a minority (less than
10%) the extra chromosome 21 originates from the
father [7-11].
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Importantly, the underlying mechanism for this paren-
tal sex difference still remains unknown. Nevertheless, it
has been generally accepted that the main problem is
mal-segregation of chromosomes 21 in an original dis-
omy 21 oocyte, a dogma most recently re-iterated by
Oliver et al. 2008, 2009, Cheng et al. 2009, Fledel-Alon
et al. 2009 and Cheung et al. 2010 [10,12-15]. Thus it is
thought that the segregation of chromosomes 21, taking
place at ovulation and after fertilisation in women post
puberty is particularly vulnerable and prone to non-dis-
junction dependent on abnormalities in chiasma forma-
tion leading to mechanical instability. It is also generally
accepted that a number of other genetic and environ-
mental factors may contribute to the variation in chance
of having a child with T21 DS (see e.g. Hunt et al. 2008,
Jones 2008, Oliver et al. 2008, Allen et al. 2009, Cop-
pedé 2009, Driscoll et al. 2009, Garcia-Cruz et al. 2009,
Ghosh et al. 2009, Hassold and Hunt 2009, Keefe and
Liu 2009, Mailhes 2008, Martin 2008, Migliore et al.
2009, Vogt et al. 2009 [8-10,16-26]).

We have recently challenged this dogma by suggesting
that the most likely predisposing factor in women for
T21 conceptions is instead the common occurrence of
fetal ovarian T21 mosaicism and in particular the net
result of the behaviour of any such T21 oocytes during
development from fetal life until adulthood and matura-
tion for ovulation [27,28]. Based on the observation that
all the eight fetuses investigated in this respect, where
termination of pregnancy had been performed for a non-
medical/social reason, showed ovarian mosaicism with an
average of 0.54% T21 cells (range 0.20-0.88%, SD 0.23)
we concluded that most females might be low grade T21
mosaics. On the other hand, some exceptional women,
who are high grade T21 mosaics, will be predisposed to
T21 conceptions already at an early reproductive age and
endure an associated high recurrence risk [25,29].

We have here explored the possibility that the low
incidence of T21 of paternal origin is correlated to a
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lower or insignificant level of germinal/gonadal mosai-
cism in men in comparison to women. Our data are
consistent with this hypothesis. Using fluorescence in
situ hybridisation (FISH) with dual chromosome 21-spe-
cific probes, we have not found a single T21 cell nucleus
in a sample of nearly 12.000 relevant cell nuclei from
fetal testes, obtained from four male fetuses where ter-
mination of pregnancy had been obtained for a non-
medical/social reason. These data are highly statistically
different from those obtained in our previous study of
more than 12.000 cells by screening eight fetal ovaries,
where on average we identified one cell in 200 with T21
without any statistically significant inter-individual varia-
tion. We further find it highly unlikely that, akin to the
situation in women [27] any rare fetal testicular T21
cells that have remained undetected in our study would
accumulate during spermatogenesis post puberty.

Results and Discussion

Using FISH technology with two chromosome 21-speci-
fic probes and applying stringent criteria for establishing
chromosome 21 copy numbers in the relevant fetal testi-
cular cell nuclei, we could not identify a single T21 cell
nucleus in any of these four apparently normal male
fetuses in a total cell population of nearly 12.000
(Table 1, Figure 1). We conclude that there is a highly
statistically significant sex difference in T21 germ line
mosaicism with a much higher incidence in fetal ovaries
than testes (p < 0.001). In a previous report we docu-
mented an average of 0.54% (range 0.20 - 0.88; SD 0.23)
of T21 cell nuclei in fetal ovaries from eight female
fetuses [28].

The overriding aim of the study has been to investi-
gate the underlying reasons for the intriguing and lar-
gely unexplored aspect of the parental origin of T21 DS,
i.e. why the extra free chromosome 21 in T21 DS origi-
nates from the mother in more than 90% of cases and
from the father in less than 10% [7-11]. It would now

Table 1 Results from fluorescent in situ hybridisation (FISH) in fetal testis using two chromosome 21-specific probes

(red and green)

No of signals green/red

Case No/Id Gest. Age (wks) 2gr/2r 3gr/3r 1gr/1r 2gr/1r 1gr/2r 2gr/3r 3gr/2r Total no of scored cells
8787 18 3927 - 35% 1 6 2 - 3971
8795 17 2510 - 5 - 2 - - 2517
5A 14 3294 1# 17%* 3 6 - 1 3316
6A 19 2010 - 3 1 22 - 2 2038
Total 11741 1 54 5 36 2 3 11842

*One of these nuclei contained only one chromosome 18 signal and was interpreted as having either monosomy 21 together with monosomy 18 or being
haploid; the remaining showing two chromosome 18 signals were recorded as either false negative monosomy 21 (due to somatic pairing) or true monosomy 21

[91,92].

**These nuclei contained two chromosome 18 signals and were also recorded as false negative monosomy 21 (due to somatic pairing) or true monosomy 21

[91,92].
#This nucleus had 3 x 18 signals and was recorded as being triploid.
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Figure 1 Two fetal testicular cells showing two dual
chromosome 21-specific signals (red and green) and two
chromosome 18 control probe signals (ice blue), therefore
recorded as being normal disomy 21.

appear that before puberty human males hardly harbour
any T21 precursor cells able to generate mature 21-diso-
mic sperm cells. Nevertheless, bearing in mind the rare
paternal origin, an incidence below one fetal T21 testi-
cular cell per six or seven thousand could still be rele-
vant in this respect.

It is also essential to note that there are a number of
Case Reports in the literature, documenting paternal
inheritance with either testicular T21 mosaicism identi-
fied per se or inferred from T21 mosaicism found in
somatic tissues, most commonly blood lymphocytes. In
addition, there are a number of reports demonstrating a
raised incidence of disomy T21 sperm in comparison to
controls in fathers of T21 cases. The characteristics of
these outstanding cases are summarised in table
2 [30-48]. It has been generally assumed that T21 DS
men are infertile, but these reports suggest that at least
in cases of T21 mosaicism fertility may be restored.
There are also reports of two cases of apparently non-
mosaic DS men, who have fathered children [49,50].
T21 DS females, on the other hand, show impaired ferti-
lity and premature menopause, but there are many more
reports of offspring to apparently non-mosaic DS
mothers than DS fathers [51,52].

The data we have here presented raise a number of
additional interesting questions, including in particular:

(1) How does the sex difference in fetal germ line
T21 mosaicism come about?

(2) Is there a correlation with somatic T21
mosaicism?

(2) What is the reason for the disomy 21 in sperm
from normal males?
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How does the sex difference in germ line

T21 mosaicism come about?

As judged by investigation of the chromosome constitu-
tion in individual cells of embryos at the 8 cell stage (by
FISH or array-CGH) a large proportion of such embryos
are mosaics including a cell line with an aberrant chro-
mosome number [28,53,54]. These embryos have been
obtained by donation from patients undergoing IVF
treatment, but it is generally thought that the same pro-
pensity to embryonic aneuploidy mosaicism is equally
common in embryos conceived naturally.

The reasons for this early segregation failure as
regards a single or a few chromosomes are not known.
Neither is it clear what the impact may be of this phe-
nomenon at later cell divisions during the window from
the first to the fifth week of fetal life, preceding the dif-
ferentiation of the gonads into ovaries and testes. It
seems likely, however, that some ‘self-correction’ can
take place [55,56]. Indeed, any occurrence and survival
of T21 stem cells at this early stage should not, concei-
vably, differ in either sex.

The germ cell precursors, the primordial germ cells,
are differentiated among the endodermal cells of the
yolk sac already at around four weeks of fetal life. They
then migrate to the gonadal ridge during the following
week. We have previously proposed [27] that the T21
fetal ovarian mosaicism detected at 14-22 weeks has
been caused by oogonial mal-segregation starting at
around five weeks gestational age, i.e. when the migrat-
ing germ cells have reached their final destination in the
mesenchyme of the urogenital ridge [57-60]. Tentatively
we may suggest that one likely reason for the sexual
dimorphism in this respect with a much lower incidence
of T21 mosaicism in fetal testes, if any, is a more strin-
gent control of the corresponding cell divisions in fetal
testes than in ovaries. In a broader sense, the very same
selective mechanism has been invoked to account for
the higher proportion of DS mothers than fathers with
the typical dermatoglyphic DS patterns [43].

Is there a correlation with somatic T21 mosaicism?

It would be of further interest to ascertain the relation
between this newly discovered sex difference in gonadal
development and that affecting the soma. If we are right
in our assumption that the common fetal ovarian T21
mosaicism identified in our previous study [28] is exclu-
sively due to a less stringent control of chromosome
segregation during fetal oogonial development than dur-
ing the corresponding cell divisions (the gonocytes, the
intermediate cells and the pre-spermatogonia) in fetal
testes, then we would not expect a correlation with T21
mosaicism in somatic cells. Yet again, further investiga-
tions will be required, analysing a number of different
types of fetal somatic tissues as well as germ cells to
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Table 2 Previous studies indicating paternal T21 germ line mosaicism

No. of DS pregnancies Percentage T21 Cells (%)

Paternal Tissue Sample

Proportion of T21 mosaic fathers (%)

Reference

Blood Skin Testis/Sperm Parental dermatoglyphics

1 Penrose 1965 [40]
2 * Massimo et al. 1967 [36]
1 233 Walker and Ising 1969 [48]
1 (Family 1) 0 75 4 (testicular fibroblasts) Hsu et al. 1971 [34]

14,3 (spermatocytes)
23 (spermatogonia)

1 (Family 2) 6
1 (Family 3) 46 4

8 Priest et al. 1973 [41]
1 6,7 Mehes et al. 1973 [37]
1 (Case 9) 6,7 Richards 1974 [42]
1 6 Papp et al. 1974 [39]
1 (Familie T) 11 Domany and Métneki 1976 [32]
1 (Familie K) 15

2 Schmidt et al. 1981 [45]
1 3-5 Rodewald et al. 1981 [43]
1 (Family 8) 1 Uchida et al. 1985 [47]
1 (Family 9) 1
1 (Family 10) 1
3 (Family A) 0 22 Sachs et al. 1990 [44]
2 (Family RDS-02) Pangalos et al. 1992 [38]
1 2 Casati et al. 1992 [31]
1 (DP-4) 0,75 (sperm) Blanco et al. 1998 [30]
1 (DP-5) 0,78 (sperm)
1 (P19) 1,5 Frias et al. 2002 [33]
2 (P24) 1.3
2 (P25) 15
4/13 embryos 0 6,6 (sperm) Somprasit et al. 2005 [46]
1 (Family A) * Kovaleva et al. 2007 [35]
1 (Family V) 14
1 (Family S) 6,7

* The proportion of T21 cells was not reported

answer this outstanding question. One other aspect of
this question concerns the possibility that T21 mosai-
cism might be induced by environmental agents includ-
ing that seen in miscarriages [29,61-66].

It is further well known that some parents of T21 DS
children are themselves T21 mosaics in both somatic cell
populations and in the germ line. Interestingly, there are
in this category of DS parents a larger number of women
than men [47,67-69]. In addition there is a sex difference
also as regards uniparental disomy (UPD) caused by so-
called rescue in an original T21 zygote, this type of
mosaicism again being more common in females than
males [70-72]. The question then arises if T21 mosaicism

involving both the germ line and the soma might more
often be due to rescue during the subsequent cell divi-
sions in an original T21 zygote rather than mal-segrega-
tion in an embryo/fetus that was originally normal
euploid, containing two chromosomes 21 [73]. If the lat-
ter were to apply (and in the absence of somatic cross-
ing-over) all ensuing cases should be isodisomic for two
of the three chromosomes 21, making up this somatically
acquired aneuploidy. There are a number of studies
showing the typical DS dermatoglyphic pattern in parents
and sibs substantiating the notion that the trisomic cell
line was indeed passed down from a mother to an
affected proband [43,45,74-76]. This type of mechanism
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would also agree with the observation of Katz-Jaffe et al
[77] that it is only the derivatives of initially T21 zygotes,
which contribute to the T21 amniocyte population recov-
ered as such.

What is the reason for the disomy 21 in sperm from
normal males?

Finally, there are by comparison a large number of pub-
lications (to date totalling at least 34), recording rate of
disomy 21 in sperm from apparently normal controls.
Results vary quite substantially in estimates of disomy
21 in individual sperm samples from 0.00 - 0.44%
[78-84]. Some of these discrepancies might be caused by
technological problems in FISH analysis. In a previous
investigation (on amniocytes) the apparent false positive
signals using a single chromosome 21 probe amounted
to around 1% of cells analysed [85]. The implication of
this consideration is that further studies on spermatozoa
obtained from normal control men using two chromo-
some 21-specific probes will be required before we may
be certain what the true incidence is of sperm disomy
21 in the normal population.

At the moment we can only surmise that any such
disomy 21 may occur by mal-segregation/nondisjunction
of chromosome 21 at pre-meiotic spermatogonial divi-
sions and/or the later meiotic Anaphase I and Anaphase
II stages of spermatogenesis in adult men. To our
knowledge there are no relevant previous studies investi-
gating chromosome segregation in testicular biopsy sam-
ples from normal adult men. In two previous small
studies evaluating chromosome number in secondary
spermatocytes at the Metaphase II stage, there was no
indication of an extra chromosome 21 by analysis of 266
cells at this meiotic stage in testicular biopsy samples
from adult men [86,87]. Interestingly, however, a corre-
lation has been found between incidence of disomy 21
in spermatozoa and T21 in blood lymphocytes in both
normal fertile controls and men suffering from subferti-
lity [78,80,81].

Conclusion

In this paper we have documented copy number counts
of chromosome 21 by fluorescence in situ hybridisation
(FISH) on fetal testes obtained from four apparently
normal male fetuses following termination of pregnancy
for a non-medical/social reason. Applying stringent cri-
teria for identification of T21 in germ cell nuclei we
could not detect a single T21 cell in a population of at
least 2000 per case. We conclude that there is a sub-
stantial sex difference in incidence of fetal germ line
T21 mosaicism where most female fetuses may be ovar-
ian T21 mosaics, while males in this study do not show
any detectable degree of fetal testicular T21 mosaicism.
We propose that this sex difference in germ line T21
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mosaicism may explain the much lower paternal origin
of T21 DS than maternal. The mechanisms underlying
the rare DS cases where the extra chromosome 21 does
originate from the father, remains unknown and further
studies in this respect are required.

As we have stressed in our previous publication on
this issue [27,28] further large-scale studies will be
required to find out if our model on germ line mosai-
cism leading to secondary meiotic non-disjunction con-
stitutes the major source of aneuploid conceptions in
the human population, or if other mechanisms might
also contribute to this effect.

Materials and methods

All procedures were performed with informed consent
and ethical approval from the local ethical committee.
Fetal testicular cells were obtained from four fetuses at
gestational age 14-19 weeks, following termination of
pregnancy for social reasons with all the fetuses having
a normal phenotypic appearance. Testes were removed
within a few hours post-mortem and placed in L-15
(Leibovitz) medium (Life Technologies) with 0.3%
bovine serum albumin (Sigma). Pieces of testes were fro-
zen at -80°C. Parts of the tissue samples were thawed to
prepare direct imprints from the cut surface of the fetal
ovary [88] and the remaining material processed by
micro-spreading [89].

Microscopy slides for FISH analysis were fixed in
methanol: acetic acid (3:1 v/v) then washed in 2x stan-
dard saline citrate (SSC) and treated with pepsin (0.1
mg/ml) in 0.01 M HCI for 8 min at 37°C. After addi-
tional washing in phosphate-buffered saline (PBS), paraf-
ormaldehyde (1%) fixation and dehydration through
series of alcohol the slides were left to air-dry at room
temperature. Hybridisation was performed according to
the manufacturers’ instructions with two DNA probes
positioned near the end of the long arm of chromosome
21 and labelled in SpectrumOrange and SpectrumGreen
respectively (Cat No: 32-190002, Abbot Molecular Inc,
USA and Cytocell, Cat No. LPT21QG/R, Cytocell Tech-
nologies Ltd. UK). A chromosome 18 centromeric probe
labelled in SpectrumAqua was added to be able to dif-
ferentiate between trisomy and triploidy (Cat No: 32-
131018, CEP 18 (D18Z1) SpectrumAqua Probe). The
DNA probes were mixed and added to the slides fol-
lowed by denaturation, hybridisation and post-hybridisa-
tion washing. After dehydration slides were mounted in
glycerol containing 2.3% DABCO (1, 4-diazabicyclo-(2,
2, 2) octane) as antifade and DAPI (4, 6,-diamino-2-phe-
nyl-indole) 0.5 mg/ml for nuclear counterstaining.

Fluorescent signals were analyzed using a Zeiss Axios-
kop 2 microscope equipped with a cooled CCD camera
(CoolSnap; Photometrics Ltd, USA) controlled by a
Power Macintosh computer. Grey scale images were
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captured, pseudocolored and merged using the Smart-
Capture 2 software (Digital Scientific Ltd, UK).

In scoring chromosome 21 copy number we focussed
attention in particular on the testicular germ cells, i.e.
the gonocytes, the intermediate cells and the pre-sper-
matogonia, identified by their specific morphology [90].
The images of two cell nuclei, showing two dual chro-
mosome 21-specific signals (red and green) and two
chromosome 18 control probe signals (ice blue) are illu-
strated in Fig 1.
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