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Abstract
Background: Microdeletion syndromes are generally identified because they usually give rise to
specific phenotypic features; many of these deletions are mediated by duplicons or LCRs. The
phenotypes associated with subtelomeric deletions are also becoming recognised. However,
reciprocal duplication events at these loci are less easily recognised and identified, as they may give
rise to milder phenotypic features, and the individuals carrying them may not therefore be referred
for appropriate testing. 403 patients with developmental delay and/or dysmorphism, referred to
our Genetics Centre for karyotyping and Fragile X expansion testing, were assessed for
chromosome imbalance by Multiplex Ligation-dependent Probe Amplification (MLPA). Two MLPA
kits were used, one containing probes for the subtelomere regions, and one containing probes for
common microdeletion loci. 321 patients were tested with both kits, 75 with the subtelomere kit
alone, and 7 with the microdeletion kit alone.

Results: 32 patients had abnormal results; the overall abnormality detection rate was 2.5% for
karyotype analysis and 7.2% for MLPA testing; 5.5% of subtelomere tests and 2.1% of microdeletion
tests gave abnormal results. Of the abnormal MLPA results, 5 were in cases with cytogenetically
visible abnormalities; of the remaining, submicroscopic, changes, 3 results were established as de
novo and 8 were inherited; parental samples were not available for the remaining cases. None of
the patients was found to have a Fragile X expansion.

Conclusion: Karyotype analysis in combination with MLPA assays for subtelomeres and
microdeletion loci may be recommended for this patient group.

Background
Microdeletion syndromes are generally caused by recur-
rent, duplicon- or LCR-mediated, contiguous gene dele-
tions, which are identified because they usually give rise to
specific phenotypic features. Similarly, the phenotypes
associated with subtelomeric deletions are becoming rec-

ognised [1]. However, the reciprocal duplication events at
these loci may give rise to milder phenotypic features, and
the individuals carrying these duplications may not be
referred for appropriate testing.
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Multiplex Ligation-dependent Probe Amplification
(MLPA) [2] is a molecular method for assessing copy
number at multiple loci in the genome, and has advan-
tages over Fluorescence In Situ Hybridization (FISH) in
terms of throughput of testing, multiplexing of loci, and
unequivocal identification of duplications as well as dele-
tions. Previous reports of the use of MLPA for screening
individuals with idiopathic mental retardation and/or
dysmorphism include cohorts of 51, 75, 210 and 455
tested for subtelomere imbalance [3-6], 258 patients
tested for imbalance at microdeletion loci [7], and 58
patients tested for both subtelomere and microdeletion
loci [8]. At our Centre, such patients are routinely referred
for karyotype analysis and Fragile X testing.

We have carried out testing for imbalance at microdele-
tion sites and in the subtelomere regions of chromosomes
in a cohort of 403 patients referred with developmental
delay and/or dysmorphism, with the aim of assessing the
prevalence of imbalance at these loci in patients in this
referral group, and to provide diagnoses for those who
had normal karyotypes and no Fragile X expansion muta-
tions. This cohort did not include patients whose referrals
included requests for specific microdeletion tests.

Results
A total of 403 patients was tested, 321 with subtelomere
and microdeletion kits, 75 with the subtelomere kit(s)
alone, and 7 with the microdeletion kit alone. 32 patients
had abnormal results: 10 patients had cytogenetically vis-
ible chromosome abnormalities (detailed in Table 1). Of
these, one had an inherited balanced rearrangement (#8),
one an apparently balanced inversion (#5), one carried Yq
heterochromatin on the chromosome 21 short arm (#6),
one had a structurally abnormal Y chromosome (#1), and
two had numerical sex chromosome abnormalities (#9
and #10). None of these findings is considered likely to be
associated with the referral indications of developmental
delay and dysmorphism, although gene disruption at the

breakpoints of case #5 cannot be excluded. Clinically sig-
nificant unbalanced karyotypes, representing 1.0% (4/
403) of the patient group, comprised a derivative chromo-
some 10 (#3) and an abnormal chromosome 20 (#4),
both also identified by MLPA, and two interstitial dele-
tions (#2 and #7).

Table 2 shows the abnormalities detected by the microde-
letion MLPA kit. Although parents were only available for
inheritance studies for patients #4 and #11, it is very likely
that the other abnormalities in this group also arose de
novo, and were associated with the clinical phenotype of
these patients. The finding in patient #4 was consistent
with the abnormal karyotype, whilst patient #16, with a
single probe duplication in the DiGeorge critical region,
also carried a deletion of chromosome 8 short arm mate-
rial (See Table 3).

Table 3 shows the subtelomere MLPA abnormalities
detected. Five of these confirmed abnormal karyotypes
(#3, #4, #6, #9 and #10). There were 3 inherited duplica-
tions of 9p (#21, #20 and #25), and three imbalances of
8p (#16, #28, #31), two of which were confirmed by
FISH. Patient #24 was found to carry a derivative chromo-
some 2 from a 2q;22q translocation. Retrospective exam-
ination of G-banded chromosomes from this case showed
that the translocation was submicroscopic. Patient #18
carried two abnormalities: an inherited duplication of
material from the subtelomere region of the chromosome
9 short arm and in addition a structurally abnormal Y
chromosome, not originally identified by G-banded chro-
mosome analysis. Nine of the subtelomere anomalies
involved only a single MLPA probe, and therefore
required confirmation; of these, 4 were confirmed in
other family members, one was confirmed by FISH, and 4
remain unconfirmed. Parental or other family samples
were only available for 7 of the 17 cases with submicro-
scopic abnormalities in this group, all of which showed
inheritance of the anomalies, although in some cases no

Table 1: Karyotypes in patients found to have abnormalities on G-banded chromosome analysis

Patient Age Karyotype MLPA MD MLPA ST

1 5 46,X,der(Y)inv(Y)(p11q11.2)Yqs pat.ish der(Y)(DXYS130 st,DXYS224 st) NAD NAD
2 6 46,XX,del(12)(q21.1q21.2) NAD NAD
3 5 46,XX,der(10)t(7;10)(q36.1;q26.3).ish der(10)(D10S2490-,D7S427+) NAD del 10q
4 1 46,XX,der(20)dup(20)(p13p11.2)del(20)(p13)dn.ish der(20)(D20S1156-

,wcp20+,pcp20p+, pcp20q+,RH44234+)
Alagille duplication del 20p

5 5 46,XX,inv(18)(q12.2q23) NAD NAD
6 1 46,XY,?v21pss NAD dup XYq
7 1 46,XY,del(7)(p1?4.2p1?5.1) NAD NAD
8 3 46,XY,inv(1)(p36.22p36.33)mat.ish inv(1)(CEB108 st,D1Z2 mv) NAD NAD
9 1 47,XXY NAD XXY
10 2 48,XXYY NAD dup XYp, dup XYq

NAD – No abnormality detected
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information was available on the phenotype of the carrier
parent.

None of the cases in the patient cohort carried Fragile X
expansion mutations. The overall abnormality detection
rate was therefore 0% (0 cases) for Fragile X testing, 2.5%
(10 cases) for karyotype analysis and 7.2% (29 cases) for
MLPA testing; 5.5% (22 cases) of subtelomere tests and
2.1% (7 cases) of microdeletion tests gave abnormal
results.

Discussion
We have previously assessed and validated the commer-
cially available MLPA subtelomere kit, and have described
a robust analysis protocol that minimises both false posi-
tive and false negative results [6]. Nevertheless, confirma-

tion of single probe abnormalities is prudent. In the data
described here, all but 4 of the subtelomere abnormalities
were confirmed, either by using a second MLPA subte-
lomere kit containing probes at nearby loci within the
subtelomere, or by FISH, or by confirming the abnormal-
ity in another family member. The microdeletion MLPA
kit contains several probes within each microdeletion
region, and at least two probes within each region showed
imbalance for six out of the seven abnormalities reported
here. Nevertheless, where FISH probes were available,
these were used to confirm the imbalance. Even when
subtelomere results were confirmed, their clinical signifi-
cance was not always clear. Where the same abnormality
was found in a parent with apparently normal clinical
phenotype, it is likely that the imbalance may represent
polymorphic variation; it is interesting that all such

Table 2: Details of imbalances found using the MLPA microdeletion kit

Patient Age MLPA MD Follow-up

4 1 Alagille duplication abnormal karyotype, de novo
11 1 Prader-Willi deletion confirmed by FISH, de novo
12 11 Williams deletion confirmed by FISH
13 3 Williams deletion confirmed by FISH
14 9 DiGeorge duplication confirmed by FISH
15 5 DiGeorge partial duplication confirmed by FISH
16 3 DiGeorge duplication

Table 3: Details of abnormalities found using the MLPA subtelomere kit

Patient Age MLPA ST Follow-up

24 7 del 2q (1), dup 22q (2) confirmed by FISH
19 3 del 3p (1)
27 11 del 3p (2) carried by maternal aunt
17 2 del 4q (1)
26 22 dup 5q (2)
30 3 dup 5q (2)
29 6 dup 6p (2) carried by affected sister
28 3 dup 8p (1) confirmed by FISH
16 3 del 8p (2) confirmed by FISH
31 35 del 8p (1)
18 9 dup 9p (1), dup XYp (2), del XYq (2) 9pdup maternal, abnormal Y confirmed by FISH
21 4 dup 9p (1) maternal
25 2 dup 9p (1) paternal
20 7 dup 16p (1) maternal
32 1 dup 21q (1)
22 2 dup XYp (2) paternal
23 2 dup XYq (2) confirmed by FISH
3 5 dup 7q (2), del 10q (2) abnormal karyotype
6 1 dup XYp, dup XYq abnormal karyotype
10 2 dup XYp, dup XYq abnormal karyotype
4 1 del 20p abnormal karyotype
9 1 XXY abnormal karyotype

Numbers in parentheses indicate the number of probes showing abnormal copy number. "confirmed by FISH" indicates that a probe for the 
relevant subtelomere region showed a concordant result.
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abnormalities found in this group were duplications, per-
haps reflecting population copy number variation such as
that described recently [9-11]. De novo abnormalities,
however, are considered very likely to be associated with
the patients' developmental delay or dysmorphism.

In one patient (#18), originally assigned a normal karyo-
type, MLPA revealed imbalance which was visible on ret-
rospective examination of the G-banded chromosomes.
This underlines the difficulty of comparing prevalence of
such abnormalities in publications from different centres,
as prevalence of detection by MLPA (or other molecular
cytogenetic methods) will be apparently greater in centres
where G-banded chromosome analysis is carried out at
lower quality, and will also depend on the selection crite-
ria for the patient cohort. Further studies on these patients
are in progress to assess the exact extent of the imbalance.

Of the submicroscopic abnormalities in the subtelomere
group, one unbalanced translocation, 5 deletions and 11
duplications were detected, indicating that duplications
may be more prevalent. Similarly, there were 3 deletions
and 4 duplications in the microdeletion group; here, one
might have predicted that those with deletions would be
targeted for specific testing because of the characteristic
syndromic features associated with such deletions, and
therefore would not be included in the tested group. This
would, however, depend on the diagnostic skill of the
referring physician; the non-specific phenotypes reported
here associated with known microdeletions (for instance
in patients #12 and #13) underlines the variability in the
presentation of these syndromes.

The copy number variation in the human genome
reported recently [9-11] is thought to under represent
smaller variants [12,13] and so it seems likely that testing
with ~60 base pair probes will uncover further polymor-
phic variation. For instance, in the data presented here,
patients #18, #21 and #25 all carry inherited duplications
of 9p; this region may therefore be subject to population
polymorphism of no clinical significance, and be an inci-
dental finding in these cases. However, unless carrier par-
ents' phenotypes are carefully assessed, an effect of
variable penetrance cannot be completely excluded.

All the patients reported here were referred for Fragile X
testing; none carried expansion mutations. At our Centre,
Fragile X testing is carried out on average for 800–1000
patients per year, of whom < 1% are found to carry an
expansion mutation. This is in contrast to the 7.2% detec-
tion rate for submicroscopic imbalance detected by
MLPA, although as none of the subtelomere results were
established as de novo, only the abnormalities found by
microdeletion/duplication testing could be definitively
established as of clinical significance.

Previous publications detailing submicroscopic imbal-
ance detected by MLPA in patients with developmental
delay/dysmorphism have reported abnormality detection
rates of 5.3% [4], 5.9% [3], 6.7% [5] and 5.9% [6] when
testing subtelomeric loci, 5.8% [7] when testing microde-
letion loci, and 13.8% [8] when testing at both subtelom-
eric and microdeletion loci. Our overall detection rate by
MLPA, for a larger cohort than these previous studies, was
7.2%; however, as discussed above, comparison between
different centres is difficult because of the differences in
resolution of G-banded chromosome analysis, and in the
selection criteria for the patients.

Conclusion
In conclusion, this paper reports the largest cohort to date
of patients with developmental delay and/or dysmor-
phism, referred for the investigation of chromosome
abnormality and tested for submicroscopic imbalance
using MLPA. The importance of robust analysis protocols,
confirmation of single probe findings, and appropriate
family studies is emphasised. A comprehensive review
[14] of available methodologies for assessing imbalance
at subtelomeres concluded that MLPA is currently the
method of choice, although the use of real-time PCR and
microarrays may become more widespread as affordable
commercial platforms become available [15]. Interest-
ingly, a recent comparison of approaches to the investiga-
tion of patients with developmental delay [8] suggests
that a strategy of replacing karyotyping with MLPA as a
first test, followed by microarray analysis, may prove
effective in terms of detection rate and cost-effectiveness.
Of course, in the long term, it has been suggested that
microarrays as a first test may prove to be the most effi-
cient as the cost of this technology falls further [16]. In the
UK, karyotype analysis as the "gold standard" and first test
for children with developmental delay and/or dysmor-
phism is currently considered to be Best Professional Prac-
tice. The findings presented here suggest that the
abnormality detection rate using a strategy of karyotype
analysis followed by MLPA for subtelomeres and micro-
deletion loci will give a diagnostic yield considerably in
excess of that gained by a strategy of karyotype analysis
and Fragile X testing, and may be the best approach until
microarray testing is generally validated as routine diag-
nostic tool, and becomes economical enough to replace
karyotyping as the first test for these patients.

Methods
Karyotype analysis
Karyotype analysis was carried out on G-banded chromo-
somes prepared from peripheral lymphocytes by standard
laboratory procedures. Preparations were generally ana-
lysed at quality 6 G-banding. Fragile X testing was per-
formed with a biplex PCR to amplify the repeat regions at
the FRAXA and FRAXE loci, using standard fluorescent
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PCR amplification. Products were then analysed using an
ABI 3730 analyser (Applied Biosystems, USA) [17].

MLPA analysis
MLPA analysis was carried out using kits (P036, P036B,
P064, P064B and P069; MRC-Holland, The Netherlands),
according to the manufacturer's protocols. Initial subte-
lomere testing used kit P069, which was followed by test-
ing with kit P036 or P036B if an abnormality was
detected. Analysis was according to our previous publica-
tion [6]. The MLPA microdeletion P064B kit contains
probes for the following regions; 1p36 telomeric region,
7q11.23 Williams syndrome region, 17p11.2 Smith-
Magenis region, 17p13.3 Miller-Dieker region, 22q11.21
DiGeorge region, 15q11.2 Prader-Willi/Angelman's
region, 20p12.2 Alagille region, 7p21 Saethre-Chotzen
syndrome, 5q35.3 Sotos syndrome region.

Fluorescence in situ hybridization
Fluorescence in situ hybridization (FISH) confirmation
used subtelomere and microdeletion probes from Abbott-
Vysis (ToTelVysion; UK), Cytocell (Aquarius; UK) or MP
Biomedicals (QBiogene; CA, USA), according to manufac-
turers' protocols. Subtelomere probes for confirmation
were chosen according to the available information on
genomic position relative to that of the MLPA probes.
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