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Abstract
Trisomy 20 has been shown to be one of the most frequent rare autosomal trisomies in patients that undergo 
genome-wide noninvasive prenatal testing. Here, we describe the clinical outcomes of cases that screened positive 
for trisomy 20 following prenatal genome-wide cell-free (cf.) DNA screening. These cases are part of a larger cohort 
of previously published cases. Members of the Global Expanded NIPT Consortium were invited to submit details 
on their cases with a single rare autosomal aneuploidy following genome-wide cfDNA screening for retrospective 
analysis. Clinical details including patient demographics, test indications, diagnostic testing, and obstetric 
pregnancy outcomes were collected. Genome-wide cfDNA screening was conducted following site-specific 
laboratory procedures. Cases which screened positive for trisomy 20 (n = 10) were reviewed. Clinical outcome 
information was available for 90% (9/10) of our screen-positive trisomy 20 cases; the case without diagnostic 
testing ended in a fetal demise. Of the nine cases with outcome information, one was found to have a mosaic 
partial duplication (duplication at 20p13), rather than a full trisomy 20. Only one case in the study cohort had 
placental testing; therefore, confined placental mosaicism could not be ruled out in most cases. Adverse pregnancy 
outcomes were seen in half of the cases, which could suggest the presence of underlying confined placental 
mosaicism or mosaic/full fetal trisomy 20. Based on our limited series, the likelihood of true fetal aneuploidy is 
low but pregnancies may be at increased risk for adverse obstetric outcomes and may benefit from additional 
surveillance.
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Introduction
It has been over a decade since the clinical introduction 
of cell-free (cf.) DNA screening into the prenatal space, 
with numerous publications demonstrating the high 
accuracy of this screening test in the detection of com-
mon fetal trisomies (trisomies 21, 18, and 13) [1–4]. The 
use of cfDNA screening to test for the presence of com-
mon fetal trisomies is now recommended by many pro-
fessional medical societies for all pregnant patients [5–9], 
however, professional societies note that more data is 
needed for cfDNA screening beyond the common tri-
somies. Genome-wide cfDNA screening can identify 
chromosomal aneuploidies that may impact a pregnancy 
beyond trisomies 21, 18, and 13, including rare autoso-
mal aneuploidies (RAAs) and copy number variants. 
There has been an increasing number of studies detail-
ing their clinical experience with genome-wide cfDNA 
screening in recent years [10–26]. Several of these stud-
ies have also detailed the adverse perinatal complications 
that can arise in some patients that screen-positive for 
RAAs or copy number variants following genome-wide 
cfDNA screening including preeclampsia, fetal growth 
restriction, intrauterine fetal demise, and preterm birth. 
However, the data specific to cases screening positive 
for trisomy 20 is relatively limited and thus this cohort 
attempts to contribute to the body of aneuploidy-specific 
literature. As more cases of rare aneuploidies by cfDNA 
are published and more information becomes available 
on the outcomes and phenotype for specific chromo-
somes, providers should theoretically be able to provide 
more tailored pregnancy management and counseling.

Studies have shown screen-positive rates for RAAs 
ranging from 0.12 to 1.1% [23, 27]. In our previous study 
looking at the impact of RAAs on pregnancy manage-
ment and outcomes, we found that trisomy 20 was 
detected in 9.2% of patients with a screen-positive result 
for a RAA [12]. Another recent study noted that trisomy 
20 was one of the most frequent rare autosomal triso-
mies in their patient cohort (11.5% of screen-positive 
cases) [18]. Trisomy 20 may be present in full or mosaic 
form in the fetus or placenta, although full fetal trisomy 
20 typically results in an early pregnancy loss. The inci-
dence of mosaic trisomy 20 on amniocentesis in a gen-
eral pregnancy population is approximately 1 in 5000 
[28]. A study looking at chromosomal abnormalities in 
products of conception following an early miscarriage 
found that trisomy 20 was present in about 1.2% of cases 
[29]. Chromosome 20 is also known to be imprinted and 
paternal uniparental disomy (UPD) phenotypes have 
been reported [30]. Mosaic trisomy 20 at amniocentesis 
is associated with a spectrum of outcomes that may not 
be correlated to the level of mosaicism [31–34]. Postna-
tal phenotypic features of mosaic trisomy 20 can include 
spinal abnormalities, hypotonia, lifelong constipation, 

sloped shoulders, and significant learning disabilities 
[34].

The objective of this study was to add to the body of evi-
dence around prenatal screening for conditions beyond 
the common trisomies by describing the outcomes of a 
small cohort of patients that had a positive result for tri-
somy 20 following genome-wide cfDNA screening. These 
cases were previously published as part of a larger cohort 
of cases [12]. Diagnostic testing outcomes as well as preg-
nancy and birth outcomes for these cases are discussed.

Methods
As noted above, the data in this study are based on a 
subset of previously published data [12]. As outlined in 
the prior publication, members of the Global Expanded 
NIPT Consortium were invited to submit details on their 
cases with a single RAA following genome-wide cfDNA 
screening for retrospective analysis. For this study, only 
cases that screened positive for the presence of trisomy 
20 were included. All cases of trisomy 20 in the broader 
cohort were included in the dataset for the present study. 
Patient samples collected as part of routine cfDNA 
screening were included in this retrospective data analy-
sis study, according to site-specific protocols and stan-
dards of care. Samples from both high-risk and low-risk 
pregnancy cohorts, along with singleton or twin sam-
ples, could be included in the study. Information includ-
ing patient demographics, test referral indications, and 
information on human chorionic gonadotropin levels, 
pregnancy associated plasma protein levels, and nuchal 
translucency were collected if available. All data was de-
identified before analysis was carried out.

Genome-wide cfDNA screening was carried out at 
each of the four sites according to their specific labora-
tory protocols; sites described in the original study that 
did not have trisomy 20 cases were excluded here [12]. 
Three of the four sites used the VeriSeq™ NIPT Solu-
tion v2 assay (Illumina, Inc.) [35], and one site used the 
TruSeq™ Nano 16 sample protocol (Illumina, Inc.) for 
cfDNA sequencing [36]. All four sites attempted to col-
lect follow-up clinical information, including diagnostic 
testing outcomes and obstetric pregnancy outcomes, for 
each of their submitted cases. Concordance of cfDNA 
results with diagnostic outcomes were based on either 
fetal or placental testing. As in the previous publication, 
cases were considered concordant if they had either a full 
or mosaic trisomy 20 or UPD on chromosome 20.

Results
Ten of the cases submitted by members of the Consor-
tium screened positive for the presence of trisomy 20. All 
ten samples were from singleton pregnancies and were 
collected between 2017 and 2020. Maternal ages, gesta-
tional ages, and fetal fractions for each of the 10 patients 
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are provided in Table  1. The median maternal age was 
38.0 years, with a range of 32.0–47.0 years; in 90% of 
cases, the patient was over 35 years old at the time of 
testing. The median gestational age was 11.8 weeks, with 
a range of 10.3–15.3 weeks; most cases had testing in 
the first trimester. Fetal fractions ranged from 6 to 12%, 
with an average of 8% and a median of 9%. Two cases 

did not have fetal fractions available (non-interpretable 
fetal fraction results) as detailed in Mossfield et al. [12]. 
With regards to referral indications for cfDNA screen-
ing, six cases did not list a referral indication, three cases 
listed advanced maternal age, and one case listed pri-
mary screening (Table 1). The patient that listed primary 
screening as the referral indication had a beta human 
chorionic gonadotropin level of 0.41 multiple of the 
median, a pregnancy associated plasma protein level of 
0.71 multiple of the median, and a nuchal translucency 
of 1.4 mm.

Diagnostic testing was carried out for 90% (9/10) of the 
screen-positive trisomy 20 cases (see Table  2); the one 
case without diagnostic testing ended in a fetal demise at 
13 weeks of gestation. All nine cases underwent amnio-
centesis to determine fetal concordance, with one case 
(case #8) also having placental testing (postnatal) in addi-
tion to amniocentesis. All nine of the cases with test-
ing on amniotic fluid had normal testing as indicated in 
Table 2. Only one case (case #2) had UPD testing, which 
returned a normal result, even though UPD testing is 
recommended for patients with a screen-positive cfDNA 
result on trisomy 20. Of the nine cases with diagnostic 

Table 1 Patient characteristics and referral indications (n = 10)
Case Mater-

nal age 
(years)

Gesta-
tional age 
(weeks + days)

Referral indication Fetal 
frac-
tion 
(%)

1 36 13 + 2 Advanced maternal age 12
2 32 10 + 2 Primary screening 6
3 39 12 + 0 Advanced maternal age 6
4 42 11 + 4 None specified 9
5 41 15 + 2 None specified N/a
6 37 12 + 4 None specified 8
7 37 11 + 0 None specified 9
8 37 12 + 5 Advanced maternal age 6
9 39 10 + 3 None specified N/a
10 47 10 + 5 None specified 9
N/a, not available

Table 2 Diagnostic testing outcomes and obstetric outcomes for study cohort
Case Diagnostic testing results Pregnancy complications Pregnancy outcome Categorya

1 Amniocentesis: Normal microarray Fetal macrosomia Term livebirth Discordant
2 Amniocentesis: Normal microarray and UPD 

studies
Preeclampsia Term livebirth Discordant with 

adverse outcome
3 Amniocentesis: Normal (unspecified testing) Unavailable Unavailable Discordant 

with unknown 
outcome

4b Amniocentesis: Normal microarray and FISH
POC (cord): Normal (unspecified testing)

Multiple anomalies on ultra-
sound and autopsy

Elective termination Discordant with 
adverse outcome

5c Amniocentesis: Normal microarray Fetal growth restriction, ges-
tational diabetes; Emergency 
preterm birth

Livebirth Discordant with 
adverse outcome

6d Amniocentesis: Normal karyotype Gestational diabetes; Preterm 
delivery

Livebirth Discordant with 
adverse outcome

7 Amniocentesis: Normal karyotype None reported Term livebirth Discordant
8e Amniocentesis: Normal karyotype

Postnatal placenta: Normal karyotype
None reported Term livebirth Discordant

9f Amniocentesis: Karyotype 46,XY, add (20)p13 
[2]/46,XY [14]

None reported Term livebirth Discordantf

10 No diagnostic testing Spontaneous fetal demise Fetal demise at 13 weeks Adverse out-
come, no testing

N/a, not applicable
aCases 1–8 could possibly represent confined placental mosaicism. Case 9, although discordant, could likely be explained by the mosaic partial duplication being 
interpreted as a trisomy 20 by the assay. Case 10 could possibly represent confined placental mosaicism or full or mosaic fetal trisomy 20 as the explanation for the 
fetal demise
bFeatures consistent with prolonged oligohydramnios, bilateral small kidneys, small bladder, normal ureters, bilateral small lungs, abnormal horizontal sulcus in 
occipital lobes of brain, small areas of haemorrhage and possible haemosiderin deposition in the brain, possible fibrin thrombus 19 weeks gestation
cEmergency preterm birth (C-section) due to cord prolapse. Eight-week stay in the neonatal intensive care unit
dSpontaneous preterm birth < 37 weeks
ePostnatal testing carried out on placental tissue, 6 biopsy samples all 46, XY
fBaby required breathing support initially at birth. Jaundice due to ABO incompatibility, doing well otherwise. Although listed as discordant, it is likely that the 
mosaic partial duplication (duplication at 20p13) observed was related to the high-risk NIPT result for a trisomy 20
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information, one was found to have a mosaic partial 
duplication (duplication at 20p13). The one case that had 
placental testing in addition to fetal testing was found to 
be discordant with the cfDNA screening result. The lack 
of placental testing in the other cases meant that con-
fined placental mosaicism (CPM) could not be ruled out 
for those patients.

Figure 1 shows the distribution of outcomes for all ten 
cases. Adverse pregnancy outcomes were seen in 50% 
(5/10), which could suggest the presence of underlying 
CPM or a mosaic/full fetal trisomy 20, especially for the 
spontaneous fetal demise case (Table 2). However, none 
of the cases with adverse outcomes had placental test-
ing. Adverse pregnancy complications observed in these 
patients included preeclampsia, fetal growth restric-
tion, spontaneous preterm birth, and fetal demise. Of 
the seven known cases that resulted in a liveborn, birth 
weights were available for five; none of these cases expe-
rienced a low birth weight.

Discussion
In this study we describe diagnostic and obstetric out-
comes for a small cohort of patients who screened posi-
tive for presence of trisomy 20 following genome-wide 
cfDNA screening. Our case series observed a range of 
outcomes for these 10 cases, from fetal demise in a case 
without diagnostic testing, to normal, term, live-births in 
discordant cases (normal amniocentesis result). It is pos-
sible that the case that ended in a fetal demise at 13 weeks 
could have been due to the presence of confined placen-
tal mosaicism or full or mosaic fetal trisomy 20, as fetal 
trisomy 20 often results in an early miscarriage. However, 
to our knowledge, testing of the products of conception 

was not carried out in this case. Four other cases that 
were found to be discordant following diagnostic testing 
with amniocentesis also had adverse outcomes. While 
this may be due to underlying CPM, none of these cases 
had placental testing. Indeed, the other discordant cases 
without adverse outcomes may also have had underlying 
CPM. Placental studies in clinical settings are challenging 
and valuable information regarding CPM associated with 
RAAs is often not available. A recent study noted that 
over half of RAA cases with follow-up that were found 
to be false positives based on fetal testing had confirmed 
CPM based on placental or chorionic villus biopsy [18]. 
Confined placental mosaicism has been shown to be 
associated with a range of pregnancy and birth compli-
cations including fetal growth restriction, preterm birth, 
structural fetal anomalies, and preeclampsia [12, 13, 37, 
38]. In a recent study from the TRIDENT group in the 
Netherlands, CPM trisomy 20 cases were found to be sig-
nificantly associated with preeclampsia and with an onset 
of labor by planned caesarean Sect. [13]. Although out 
study cohort is limited by small sample size, our findings 
are similar to those seen in previous studies [13, 39].

Studies have shown a range of positive predictive val-
ues (PPVs) for RAAs detected by cfDNA screening, with 
a recent publication noting a pooled PPV of 11.46% in the 
detection of rare autosomal trisomies based on a meta-
analysis of 31 studies [40]. However, most studies base 
their PPV on concordance with fetal diagnostic testing 
only, and not placental testing. Therefore, the PPV may 
in fact be much higher for RAA cases. Unfortunately, a 
lack of comprehensive diagnostic testing prohibits the 
calculation of PPV for our study cohort. However, if we 
consider the possibility that the four cases with adverse 

Fig. 1 Distribution of outcomes for genome-wide cfDNA screen-positive trisomy 20 cases
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pregnancy outcomes but no placental testing may have 
had CPM of trisomy 20, and that the fetal demise case 
was a fetal trisomy 20 case, then our study PPV could 
have been as high as 50% (5/10). In addition, if we also 
view the case with a mosaic partial duplication (duplica-
tion at 20p13) as concordant with the cfDNA result, then 
the study PPV could have been as high as 60% (6/10).

Given the adverse pregnancy and birth outcomes 
that can occur with RAAs, some publications have sug-
gested tailored perinatal management for patients who 
screen positive for presence of a RAA [12, 13]. This could 
include detailed ultrasound scans, increased monitor-
ing for complications such as fetal growth restriction, 
and confirmatory diagnostic testing. It has also been 
suggested that confirmatory testing using CVS may be 
preferable over amniocentesis for a trisomy 20 result on 
cfDNA screening as this trisomy is usually involved in 
CPM type I, i.e., presence of the aneuploidy in the cyto-
trophoblast only [41]. UPD testing should also be consid-
ered for patients with a screen-positive result for trisomy 
20 [30], given the potential for a trisomic rescue resulting 
in a mosaic placenta and euploid fetus. Unfortunately, in 
this cohort of cases, UPD testing was only carried out in 
one case. As is the case with all cfDNA screening, appro-
priate comprehensive pre-and post-test counselling of all 
patients is needed.

In conclusion, genome-wide cfDNA screening allows 
screening for additional chromosomal aneuploidies 
beyond the common trisomies. As the uptake of genome-
wide cfDNA screening increases, more data regarding 
clinical outcomes of RAAs, including chromosome-spe-
cific data, will be useful for patient counseling. Diagnostic 
testing is recommended in the event of any screen-posi-
tive cfDNA result [5–7]; placental testing should be con-
sidered more systematically for screen-positive cases. In 
addition, in the event of a screen-positive result involv-
ing an imprinted chromosome, UPD testing should also 
be considered. Based on our series, the fetal outcome for 
genome-wide cfDNA screen-positive cases for trisomy 
20 is encouraging, but pregnancies may be at increased 
risk for adverse obstetric outcomes and may benefit 
from additional surveillance. Given that this cohort was 
comprised mostly of patients of advanced maternal age, 
further studies are needed to see if similar outcomes are 
observed in an average-risk obstetric population.

Abbreviations
cfDNA  cell-free DNA
CPM  confined placental mosaicism
RAA  rare autosomal aneuploidy
UPD  uniparental disomy
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