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Abstract 

Background BCR::ABL1‑like acute lymphoblastic leukaemia (BCR::ABL1‑like ALL) is characterized by inferior outcomes. 
Current efforts concentrate on the identification of molecular targets to improve the therapy results. The accessibil‑
ity to next generation sequencing, a recommended diagnostic method, is limited. We present our experience in the 
BCR::ABL1‑like ALL diagnostics, using a simplified algorithm.

Results Out of 102 B‑ALL adult patients admitted to our Department in the years 2008–2022, 71 patients with 
available genetic material were included. The diagnostic algorithm comprised flow cytometry, fluorescent in‑situ 
hybridization, karyotype analysis and molecular testing with high resolution melt analysis and Sanger Sequencing. 
We recognized recurring cytogenetic abnormalities in 32 patients. The remaining 39 patients were screened for 
BCR::ABL1‑like features. Among them, we identified 6 patients with BCR::ABL1‑like features (15.4%). Notably, we docu‑
mented CRLF2‑rearranged (CRLF2‑r) BCR::ABL1‑like ALL occurrence in a patient with long‑term remission of previously 
CRLF2-r negative ALL.

Conclusions An algorithm implementing widely available techniques enables the identification of BCR::ABL1‑like ALL 
cases in settings with limited resources.

Keywords BCR::ABL1‑like acute lymphoblastic leukemia, Cytogenetic analysis, Molecular characteristic, Molecular‑
targeted therapy

Introduction
B-cell acute lymphoblastic leukaemia (B-ALL) is a malig-
nancy resulting from the transformation of a B-cell lin-
eage progenitor cell [1]. The hallmark of B-ALL cases is 
the presence of genetic abnormalities, including chro-
mosomal rearrangements, DNA copy number variations 
(CNV) and sequence mutations [2]. The 5th edition of 
the WHO classification divides B-ALL entity on the basis 
of refined diagnostic criteria and emphasis on therapeu-
tically and/or prognostically actionable biomarkers [3]. 
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The recently updated classification delineates a newly 
identified molecular subtype—B-ALL with BCR::ABL1-
like features as a separate entity. It is characterized 
by a similar gene expression profile to the  ALL with 
BCR::ABL1-fusion, but lacks the BCR::ABL1 fusion gene 
[4, 5]. It is exclusive of well-known drivers of B-ALL, 
including BCR::ABL1 fusion, KMT2A rearrangement, 
ETV6::RUNX1 and TCF3::PBX1 fusions [5]. The preva-
lence of the BCR::ABL1-like ALL is impacted by the age 
and ethnicity of distinct cohorts and the identification 
methodology. The incidence increases with age, with a 
peak in young adults population [6–8]. It is characterized 
by inferior outcomes due to a high rate of nonresponse 
to induction therapy, higher relapse risk, lower overall 
survival rates and the persistence of minimal residual dis-
ease (MRD) [9–11].

Diverse genetic alterations dysregulating kinase and 
receptor signaling are the hallmark of the BCR::ABL1-like 
ALL and can be divided into several classes: (1) altera-
tions activating JAK-STAT pathway signaling (including 
rearrangements of cytokine receptor-like factor 2 
(CRLF2) gene, Janus kinase 2 (JAK2) gene and erythro-
poietin receptor (EPOR) gene); (2) rearrangements 
of ABL-class genes (ABL1, ABL2, PDGFRα, PDGFRβ, 
CSF1R); (3) Ras pathway mutations (KRAS, NRAS, NF1, 
PTPN11) and other uncommon rearrangements [6, 7, 
12].

The underlying molecular changes in the BCR::ABL1-
like ALL remain of significant interest due to the possi-
bility of incorporation of targeted therapy with tyrosine 
kinase inhibitors (TKI) and JAK inhibitors [13, 14]. Sev-
eral ongoing clinical studies are evaluating the effective-
ness of addition of targeted therapy to chemotherapy 
to improve the prognosis [15]. Current scientific efforts 
concentrate on the identification of molecular targets, 
and numerous algorithms have been proposed for the 
recognition of the BCR::ABL1-like ALL subtype, includ-
ing targeted fusion testing, tiered algorithms and broad-
based testing [16–19]. Nevertheless, the principal aim of 
the diagnostic approach is to recognize the underlying 
genetic feature, since they are determinative for the prog-
nosis and targeted therapy. In smaller, real-world groups 
with constrained resources, the access to comprehensive 
sequencing strategy is limited. Hence, in those centers, 
the testing methods should be tailored.

Herein, we present our experience in the BCR::ABL1-
like ALL diagnostics. We applied an integrated algorithm 
which allowed a cost-effective detection of this entity. 
The frequency and clinical outcome of BCR::ABL1-like 
ALL cases were analyzed and compared with the existing 
literature data, with a particular emphasis on the poten-
tial therapeutic options.

Materials and methods
Patients
The study was conducted at the Department of Hematol-
ogy and Bone Marrow Transplantation of Poznan Univer-
sity of Medical Sciences. Adult patients diagnosed with 
B-cell ALL treated at our Department in the years 2008–
2022 were included (n = 102). Thirty-one patients were 
excluded from further analysis due to the lack of cytoge-
netic material or essential clinical data. We performed a 
retrospective analysis of the clinical data, cytogenetic and 
molecular characteristics in patients treated in the years 
2008–2020 (n = 63). Independently, a prospective analy-
sis of cases diagnosed in the years 2020–2022 was per-
formed (n = 8). This study was conducted in accordance 
with the Declaration of Helsinki. The study was approved 
by the Poznań University of Medical Sciences Bioethical 
Committee (Resolution No. 705/20). 63 patients (88.7%) 
enrolled in the study were treated with B-ALL protocols 
according to the Polish Adult Leukemia Group (PALG) 
guidelines. Remaining patients were treated according to 
hyper-CVAD protocol.

Methods
The expression of TSLPR (predictive of the rearrange-
ment of the CRLF2) with an anti-TSLP antibody (Invit-
rogen™, clone 1F11/TSLPR PE) was performed using the 
10-color multiparameter flow cytometry method (FCM; 
BD FacsCanto II Ilyric™) using the strategy of internal 
negative control.

The karyotype analysis was performed using G banding 
(GTG). The results were described according to the Inter-
national System for Human Cytogenetic Nomenclature 
(ISCN). FISH studies were performed on the interface 
nuclei using break-apart probes for TCF3::PBX1, CRFL2, 
JAK2, EPOR, ABL1, ABL2 (Cytocell, Cambridge, UK) 
and for BCR::ABL1, KMT2A, and PDGFRb (Vysis, IL, 
USA) and, additionally, for IGH and P2RY8 in the CRLF2 
rearranged (CRLF2-r) cases (Cytocell, Cambridge, UK). 
At least 200 interphase nuclei were scored for each probe 
by two independent examiners. The cut-off threshold for 
the BCR::ABL1-like FISH probes of > 10% of cells was 
established.

The analysis of the JAK2 exon 16 sequence was con-
ducted using DNA extracted from whole-blood leu-
kocytes at the time of diagnosis QIAmp DNA Mini Kit 
(Qiagen) and high resolution melt analysis (HRMA). 
For the variant type identification screened by HRMA, 
Sanger sequencing was applied using the BigDye Ter-
minator v3.1 Cycle Sequencing kit (Applied Biosystems, 
Thermo Fisher Scientific) and the following primers—
forward: 5ʹ-TGC TCC AGT ACT TGT GGA CTGA-3ʹ and 
reverse: 5ʹ-CCA CTG CCC AAG TAA AGC TTAG-3ʹ.
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Diagnostic algorithm
For the identification of BCR::ABL1-like ALL cases, we 
implemented a stepwise algorithm integrating all the 
above-mentioned techniques (Fig. 1).

Firstly, the presence of the recurring cytogenetic fea-
tures was evaluated. Patients with recurring cytogenetic 
lesions were excluded from screening for BCR::ABL1-like 
ALL. The expression of TSLPR was evaluated by FCM (in 
a prospective analysis only). Patients expressing TSLPR 
on leukemic blasts were enrolled for the FISH analysis 
with a CRLF2 break-apart probe. Patients lacking the 
TSLPR expression were recognized as non-CRLF2-rear-
ranged (non-CRLF2-r) and subsequently proceeded to 
the analysis with remaining FISH probes (JAK2, EPOR, 
ABL1, ABL2, PDGFRb). In a case of retrospective anal-
ysis, the patients were primarily examined for the pres-
ence of CRLF2 rearrangement with a FISH probe. In 
CRLF2-r cases, the next step included an analysis with 
IGH and P2RY8 FISH probes to identify the fusion gene. 
Non-CRLF2-r cases proceeded to the analysis with the 

remaining FISH probes (JAK2, EPOR, ABL1, ABL2, 
PDGFRb).

Additionally, all patients with  CRLF2-r B-ALL with 
available DNA were enrolled in the analysis of the JAK2 
exon 16 mutational status.

Results
The median age of the patients at the time of initial 
diagnosis was 40 (range 18–69 years). Most of the indi-
viduals were diagnosed with the B-common phenotype 
(n = 50). 32 patients from the study group were recog-
nized as B-ALL with recurring cytogenetic abnormali-
ties. The remaining patients (n = 39) were screened for 
BCR::ABL1-like features. Out of the prospectively ana-
lyzed subjects (n = 8), we revealed high expression of 
CRLF2 in 3 cases in FCM. Second step analysis with 
FISH revealed CRLF2::IGH fusion in all 3 patients. In a 
retrospectively analyzed group, we revealed CRLF2-r in 
one patient and ABL-class genes rearrangements in 2 
patients.

Fig. 1 A stepwise algorithm integrating multicolor flow cytometry and fluorescent in situ hybridization implemented in the study
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Interestingly, one of the patients was enrolled in the 
study due to a relapse of B-ALL within 13 years after the 
treatment with chemotherapy and an allogeneic hemat-
opoietic stem cell transplantation (alloHSCT) in the first 
complete remission (CR1). Notably, we performed a ret-
rospective analysis on the basis of cytogenetic material 
obtained at the time of the initial diagnosis, however, the 
rearrangement of CRLF2 was absent. The results of the 
cytogenetic analysis in the relapsed case is presented in 
Fig. 2.

The incidence of the BCR::ABL1-like ALL among 
patients lacking recurrent cytogenetic features was 15.4% 
and in the whole study group of B-ALL patients it was 
8.5%. Most of the cases were CRLF2-r (n = 4; 66.7%). 
Overall, we distinguished 5 subtypes of B-ALL in the 
study group: BCR::ABL1 positive ALL, BCR::ABL1-like 
ALL, ALL with KMT2A-r, TCF3::PBX1 positive ALL and 
other B-ALL. In Table 1 we present a brief summary of 

clinical characteristics of distinguished cytogenetic sub-
types of B-ALL. In Table 2 we present the clinical charac-
teristics of BCR::ABL1-like ALL patients. The incidence 
of distinct entities is presented in Fig. 3.

Additionally, patients with CRLF2-r were enrolled 
in the analysis of the JAK2 exon 16 mutational status. 
HRMA revealed different melting profile in one studied 
sample (CRLF2-r case). We confirmed the presence of the 
variant LRG_612:c.2049A>C(p.Arg683Ser) using Sanger 
sequencing in this case (Fig.  4). Overall, the incidence 
of point mutation in the JAK2 exon 16 within CRLF2-r 
cases was 25%.

Discussion
Herein we present a strategy to identify cases with poten-
tially targetable genomic lesions which can be applied in 
a limited resource setting. A similar approach integrating 
FISH and FCM has been implemented by Sharma and 

Fig. 2 The results of a diagnostic work‑up of a patient with CRLF2‑rearranged BCR::ABL1-like ALL which occurred during a relapse after a prolonged 
remission despite the absence of CRLF2 rearrangement at the initial diagnosis. Top left side: FISH analysis with CRLF2 break‑apart probe (CytoCell®) 
on leukemic blasts at the initial diagnosis. In the normal cell, 2 fused red/green signals (2 R/G) or 2 yellow signals (2Y) are observed. Top right side: 
FISH analysis with CRLF2 break‑apart probe (CytoCell®) on leukemic blasts at the relapse after prolonged remission (13 years). A translocation 
resulting in 1R, 1G, 1R/G. Bottom: Second step analysis with IGH probe (CytoCell®). In a normal cell, 2 fused red/green signals (2 R/G) or 2 yellow 
signals (2Y) are expected. Cells with 1R, 1G, 1R/G are indicative of IGH rearrangement. ALL, acute lymphoblastic leukemia; CRLF2, cytokine 
receptor‑like factor 2; FISH, fluorescent in‑situ hybridization
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Virk [20, 21]. In the material from our Department, high 
expression of CRLF2 was indicative of the presence of 
CRLF2-r, similarly to observations from a larger cohort in 
the study of Virk et al. [21]. The frequency of BCR::ABL1-
like cases in our material was 15.1% of B-ALL patients. 
The incidence of this entity in our cohort appears to be 
lower than in the literature data [6, 7]. It might be the 
result of both substantial number of cases excluded 
lacking adequate material and of limited techniques 
applied in the study. Sharma used a similar cost-effec-
tive approach in a larger cohort and revealed a slightly 
lower incidence of BCR::ABL1-like cases in − 11.4% of 
B-ALL in the screened group. Notably, this study group 
included adults, as well as the pediatric population, in 
which BCR::ABL1-like ALL is less frequently reported 
[20]. Among JAK-STAT pathway fusions, the rearrange-
ments of CRLF2 account for the majority of cases [8, 9, 
20]. The overexpression of CRLF2 observed in FCM, may 
be the result of either cryptic deletion of the pseudoau-
tosomal region 1 of chromosomes X and Y leading to the 
gene fusion P2RY8::CRLF2, or the translocation resulting 
in the gene fusion IGH::CRLF2 [21, 22]. Approximately 
50% of patients with CRLF2-r ALL harbor mutations 
in the  JAK  family genes, mainly in the JAK2 gene [6]. 
In our group, one patient harbored a point mutation 
within the exon 16 of the JAK2 gene, JAK2 c.2049A>C 

(p.R683S), accounting for 25% of CRLF2-r cases. Nota-
bly, the mutation occurred in the patient with a relapse 
after a prolonged remission post-alloHSCT. The relatively 
low frequency of JAK2 mutations in the study may be 
explained by the applied technique, which is less sensi-
tive than the next generation sequencing implemented in 
numerous reports, a small study group and the fact that 
JAK2 mutations in the BCR::ABL1-like ALL may occur in 
other coding regions.

The optimal treatment strategy of the BCR::ABL1-like 
ALL is debatable. As far as the molecular background 
of this subtype is concerned, the combination of stand-
ard chemotherapy with TKI remains promising. Sev-
eral preclinical studies and case studies reported safety, 
activity and efficacy of the JAK inhibitor, ruxolitinib, in 
BCR::ABL1-like ALL harboring JAK-STAT-activating 
aberrations and ABL-class inhibitors in cases with rear-
rangements of ABL-class genes [6, 10, 14, 23–28]. The 
studies by Steeghs et  al., on the other hand, revealed 
that proliferation of JAK2 mutated ALL cells depended 
on several signaling pathways activity [29]. Hence, while 
JAK2-r leukemic cells were found to be susceptible to 
JAK inhibitors, both ruxolitinib and momelotinib, the 
efficacy of JAK specific therapy may be limited in JAK2 
mutated cells. Similar results were observed by Schwartz-
man et al. [30]. Furthermore, the study of Steeghs et al. 

Table 1 Clinical and laboratory characteristics of distinct cytogenetic subgroups of the studied patients with B‑ALL (n = 71)

B-ALL B cells acute lymphoblastic leukemia, NOS not otherwise specified, WBC white blood cells, CNSi central nervous system involvement, Myeloid antigens CD13, 
CD33, CD36, CD117, CR complete remission, MRD minimal residual disease, alloHSCT allogeneic stem cells transplantation; complex karyotype: ≥ 3 unrelated 
(acquired) chromosomal abnormalities; another result: abnormal but non-complex karyotype

Parameter BCR::ABL1-like n = 6 Ph-negative other 
n = 33

Ph-negative KMT2A-r
n = 7

Ph-negative
TCF3::PBX1-positive 
n = 3

BCR::ABL1-
positive
n = 22

Male; n (%) 5 (83.3%) 25 (75.6%) 0 1 (33.3%) 8 (36.4%)

Age (years)

 Median (range) 31.5 (21–55) 32 (18–69) 35 (29–59) 49 (24–55) 43 (19–68)

Immunophenotype

 B‑common 5 23 0 1 21

 Pro‑B 1 8 6 0 1

 Pre‑B 0 2 0 1 0

 NOS 0 0 1 1 0

Aberrant expression of 
myeloid antigens

 n (%) 4 (66.7%) 10 (30.3%) 0 0 13 (59.1%)

WBC (×  109/L)

Median (range) 38.2 (9.4–220) 4.7 (0.5–208) 44.5 (4.8–259.5) 3.35 (2.6–34) 11.5 (0.9–131.1)

CNSi; n (%) 1 (9.1%) 4 (12.1%) 4 (57.1%) 1 (33.3%) 6 (27.3%)

Response to induction

 CR  MRD–; n (%) 4 (66.7%) 18 (54.5%) 7 (100%) 1 (33.3%) 12 (54.5%)

 CR  MRD+; n (%) 2 (33.3%) 4 (12.1%) 0 2 (66.7%) 8 (36.4%)

AlloHSCT; n (%) 3 (50%) 16 (48.5%) 4 (57.1%) 2 (66.7%) 14 (63.65%)

Alive; n (%) 2 (33.3%) 15 (45.5%) 2 (29%) 1 (33.3%) 15 (68.2%)
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provides rationale for the hypothesis that JAK2 mutations 
may be secondary lesions in the leukemic process, while 
JAK2 rearrangements are leukemic drivers. Therefore, it 
is suggested to combine JAK inhibitors with Ras pathway 
inhibitors to avoid clonal selection [29–32]. A synergis-
tic effect of combination of TKIs with antagonists of the 
BCL-2 anti-apoptotic protein, venetoclax and navitoclax, 
was also reported [24].

The role of alloHSCT in the first CR is also a subject 
of debate, since the prognostic impact of MRD negativity 
post-induction remains questioned [33, 34]. An analysis 
of Koller et al. suggests that alloHSCT may overcome the 
poor prognosis of CRLF2-r ALL [35]. It is postulated that 
patients with the presence of CRLF2-r and JAK2-r should 
be considered as candidates for alloHSCT [36]. On the 
other hand, relapses post-alloHSCT are often driven 
by CRLF2-r clones. These relapses occur irrespective of 
the MRD-negativity achievement, since CRLF2 fusions 
are considered early events in the leukemogenesis and 
CRLF2-r malignant clone may persist in a quiescence 
during the treatment, and eventually escape the immune 
system or gain a proliferative state trough acquired 

mutations [37–39]. Notably, herein we report a case of 
a patient with CRLF2-r which occurred during a relapse 
after a prolonged remission, despite the absence of 
CRLF2-r in at the initial diagnosis. Conversely, we could 
not exclude the possibility of overexpression of CRLF2 
on leukemic blast at the original diagnosis, since it was 
not evaluated in flow cytometry at that time. Shah et al. 
described a similar case of an individual with a relapse of 
CRLF2-r ALL after a prolonged remission, however, the 
authors did not analyze the presence of CRLF2-r in the 
material from the initial diagnosis [39]. Studies by Aldoss 
et  al. revealed that during a late relapse of ALL after 
alloHSCT, novel cytogenetic aberrations might occur as 
a manifestation of a genetic evolution of the disease or 
clonal selection, or even due to de novo secondary leuke-
mogenesis related to former therapy [40].

Although our study provided valuable results regard-
ing BCR::ABL1-like ALL diagnosis, it did have some 
drawbacks. The first is the small number of patients 
enrolled in the study and its mainly retrospective 
nature due to a relatively low incidence of B-ALL in the 
adult population. A substantial proportion of patients 

Fig. 3 Cytogenetic and molecular characterization of the studied B‑ALL patients. The proportion of patients for a particular subgroup of the whole 
cohort (n = 71)
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was eventually excluded as a result of lack of adequate 
cytogenetic material, which could impact the over-
all incidence of BCR::ABL1-like cases in the analyzed 
group. The second limitation is the use of standard 
diagnostic techniques which, however, are acceptable, 
if next generation techniques are unattainable [41]. 
Another limitation of the study is the fact that enrolled 
patients were treated over a long time period of time. 
Although most of the subjects were diagnosed and 
treated according to the guidelines of PALG, the ther-
apeutic protocol evolved over the last decade, hence 
the patients were not uniformly treated. Finally, this 
is a single-center study, therefore, it presents a cohort 
which is not large enough to show significance. On 
the other hand, our results remain useful for future 

meta-analysis on BCR::ABL1-like ALL incidence and 
outcomes from real-world settings. Our study dem-
onstrates that smaller centers can potentially provide 
useful information regarding BCR::ABL1-like ALL, 
regardless of the limited techniques employed. Our 
results remains also essential considering the potential 
advent of molecularly targeted therapy in BCR::ABL1-
like patients.

Conclusions
The diagnostic strategy implementing widely available 
techniques enables the identification of high risk and 
therapeutically targetable cases of BCR::ABL1-like ALL. 
The presented approach may be particularly appropri-
able in settings with limited resources.

Fig. 4 The high resolution melt analysis (HRMA)—top field, and Sanger sequencing result (bottom field) in the CRLF2‑r patients. HRMA revealed 
abnormal melting profile in one studied sample, in contrast to the normal double‑stranded DNA dissociation characteristics during heating in 
control samples (wild type, WT). In the presented case, Sanger sequencing study revealed the presence of the variant LRG_612:c.2049A>C(p.
Arg683Ser). Reference transcript ID (RefSeq): NM_004972.4:c.2049A>C, NP_004963.1:p.(Arg683Ser)
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