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CASE REPORT

Molecular cytogenetic analysis of partial 
monosomy 10p and trisomy 10q resulting 
from familial pericentric inversion (10): a first 
case report in Chinese population
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Yuanbai Wang1 and Yingjun Xie5,6* 

Abstract 

Background: Chromosome aberrations of 10p monosomy and 10q trisomy resulting from parental pericentric inver-
sion 10 are extremely rare, and to date, very few reports have been published on the matter.

Case Presentation: A 30-year-old pregnant woman with recurrent pregnancy loss is enrolled in this research. In this 
pregnancy, spontaneous abortion occurred in the first trimester of her pregnancy. Chromosomal microarray analysis 
of the abortion tissue showed a partial 10p monosomy (arr[GRCh37] 10p15.3p11.21(100,047_34,848,853) × 1) and a 
duplication of 10q (arr[GRCh37] 10q26.13q26.3(126,093,990_135,426,386) × 3). Further parental karyotype analysis 
indicated that the chromosomal abnormalities in the fetus was resulted from paternal pericenric inversion inv(10)
(p11.21q26.13). This study presents the first case of a large deletion of 10p combined with 10q trisomy, resulting in 
pregnancy loss. Of these two manifestations, the large deletion of chromosome 10p may be the primary reason for 
spontaneous abortion in this subject.

Conclusions: This study presents the first case of partial 10p monosomy associated with 10q trisomy in Chinese 
population. It provides more information on the chromosome aberration of 10p monosomy and 10q trisomy and 
further strengthens the application value of microarray in the molecular etiological diagnosis of recurrent spontane-
ous abortion.

Keywords: Recurrent spontaneous abortion, Molecular cytogenetics, Monosomy 10p, Trisomy 10q, Pericentric 
inversion
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Background
Novel genetic abnormalities in the fetus and parental 
inheritance are a common cause of accidental or recur-
rent spontaneous abortion (RSA). These irregularities 
include fetal aneuploidy abnormalities, copy number 
variants, single-gene diseases, etc. [1] However, the 
most common parental inheritance factors are the bal-
anced translocation of parental chromosomes, or Rob-
ertson translocation and inversion. In RSA cases, 5% of 
parents have chromosomal rearrangements, including 
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balanced translocations, and Robertson transloca-
tions and inversions [2]. In recent years, chromosomal 
microarray technology has gradually replaced karyo-
type analysis in the genetic analysis of spontaneous 
abortion, with advantage of automatic and easily iden-
tification of chromosomal abnormalities, as well as 
increased detection rate of chromosomal abnormalities 
without cell culture. [3, 4]

Terminal chromosomal duplication and deletion that 
occurs in the same chromosome is usually the result of 
parental inversion. Chromosomal pericentric inversion 
commonly forms a unique inversion loop in the first 
meiosis, resulting in four different gametes, including 
a normal chromosome and an inverted chromosome. 
It also causes two kinds of chromosomal recombinants 
with deletions and duplications of distal regions [5]. In 
general, the smaller of the inverted segment, the larger 
of the duplication and deletion segments in the gametes. 
This consequently results in a tendency towards infertil-
ity, miscarriage, and stillbirth. This chromosomal rear-
rangement also leads to the production of unbalanced 
gametes including 10p monosomy associated with 10q 
trisomy and opposite terminal chromosomal rearrange-
ments. However, few reports are available on the pericen-
tric inversion of chromosome 10.

In this study, we identified a recombinant chromosome 
l0, which was caused by a paternal pericentric inversion 
inv(10)(p11.21q26.13). This was the first-ever observation 
of a large deletion of chromosome 10p associated with 
10q trisomy, resulting in spontaneous abortion in the first 
trimester. Besides, we reviewed the molecular cytogenet-
ics of chromosomal abnormalities resulting from familial 
pericentric inversion 10 (Table 1).

Methods
Approximately 2  ml of peripheral blood was collected 
from both parents. Parental chromosome karyotype 
analysis was conducted using G-banding technology with 
approximately 300 bands based on the automatic chro-
mosome harvesting system Sinochrome Chromprep II 
(Shanghai Lechen Biotechnology Co., Ltd, China). The 
International System for Human Cytogenomic Nomen-
clature (ISCN 2020) was used as the reference for deline-
ates karyotypes. The QIAamp DNA Blood Kit (QIAGEN, 
Germany) was utilized to extract genomic DNA from 
the abortion tissue and parental peripheral blood of the 
foetus. SNP array analysis was conducted using Affy-
metrix CytoScan 750  K, according to the Affymetrix 
CytoScan Assay user guide (http:// www. therm ofish er. 
com). The chromosomal copy number variants were 
described according to the Human NCBI Build GRCh37 
(hg19/2009).

Case presentation
A 30-year-old pregnant woman (gravida 4, para 0) from 
Quanzhou City, Fujian province, China came to Quan-
zhou Women’s and Children’s Hospital because of spon-
taneous abortion and adverse pregnancy history. Her 
husband was 31  years old. There was no family history 
of hereditary disease and the couple denied any con-
sanguinity. At her first pregnancy, termination was con-
ducted at a gestational age of  13+ weeks due to nuchal 
translucency (NT) thickening (7 mm) and fetal oedema. 
A spontaneous abortion then occurred at  8+ weeks dur-
ing the second pregnancy. The third pregnancy was 
terminated at gestational age of  11+ weeks due to NT 
thickening (11.2  mm) and hygroma. Unfortunately, the 
abortion tissues were not available. In the most recent 
pregnancy, early threatened abortion occurred at gesta-
tional age of  8+2 weeks of pregnancy, and aborted tissue 
was discharged at gestational age of  8+5 weeks. Molecular 
investigation was further performed after termination.

The pregnant woman received prenatal clinical con-
sultation and parental karyotype analysis was fur-
ther performed. Chromosome karyotype analysis 
revealed a karyotype of 46,XY,inv(10)(p11.21q26.13) 
in the prospective father (Fig.  1), and a karyotype of 
46,XX in the prospective mother. The SNP array analy-
sis of the abortion tissue showed a 34.7-Mb dele-
tion in 10p11.21p15.3 region (arr[GRCh37] 10p15
.3p11.21(100,047_34,848,853) × 1) of chromosome 10 
(Fig. 2). Additionally, we observed a 9.3-Mb duplication of 
chromosome 10q26.13q26.3 region (arr[GRCh37] 10q26.
13q26.3(126,093,990_135,426,386) × 3), as illustrated in 
Fig. 2. The deletion of chromosome 10p11.21p15.3 con-
tained 32 Online Mendelian Inheritance in Man (OMIM) 
genes and the 10q26.13q26.3 duplication covered 35 
OMIM genes. The SNP array was performed in the par-
ents and no copy number variants were observed.

Discussion and conclusions
Few studies are available on the familial recombination 
of a pericentric inversion of chromosome 10, a condition 
which usually results in unbalanced gametes including 
monosomy 10p associated with trisomy 10q and opposite 
terminal chromosomal rearrangements. The smaller the 
inverted segment would lead to more severe phenotype. 
To our knowledge, this is the first case with large deletion 
of 10p result from paternal pericentric inversion inv(10)
(p11.21q26.13) and leading to spontaneous abortion in 
the first trimester.

As displayed in Table  1, mostly of the present cases 
harbored trisomy 10p and monosomy 10q and exhibit-
ing the typical features of trisomy 10p, which was a well-
delineated chromosomal abnormality characterization by 
facial deformities, finger deformities, as well as growth 
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and intellectual disabilities. A previous study conducted 
by Chen et al. [11] demonstrated a fetus with a 31.65-Mb 
duplication of 10p15.3p11.22 and a 3.07-Mb deletion of 
10q26.3 resulting from paternal pericentric inversion, and 
the pregnancy was subsequently terminated at gestational 
age of 23  weeks with the fetus displaying facial dysmor-
phism of hypertelorism, large low-set ears, a broad and 
long nasal bridge, a long face, and micrognathia, which 
were consistent with partial trisomy 10p syndrome.

Recombination in chromosome 10 with partial mono-
somy 10p and trisomy 10q resulting from parental peri-
centric inversion is less common. At present, only three 
cases of partial 10p deletion and 10q duplication resulting 
from pericentric inversion have been reported in our best 
knowledge. [5–7] Distal trisomy 10q is a well-recognized 
syndrome, with typical features including growth retar-
dation, hypotonia, mild to severe intellectual disabilities, 
and mild to severe psychomotor retardation [12]. Stud-
ies revealed that partial 10p deletion and 10q duplica-
tion mainly exhibit clinical features of trisomy 10q, which 
usually present a small deletion in the distal of chromo-
some 10p [5–7]. However, our case displayed a significant 
deletion of 10p, which was the first case of a large dele-
tion of chromosome 10p associated with partial trisomy 
10q resulting from pericentric inversion. In this study, a 

deletion fragment range from 10p11.21 to the distal with 
a 34.7-Mb deletion was identified, which is a rare chromo-
somal abnormality, and it includes three defined distinct 
contiguous gene deletion syndromes, including the 10p13-
10p14 region contributed to the DiGeorge critical region 
2 (DGCR2) syndrome, [13] the 10p14 region containing 
GATA3 gene that responsible for hypoparathyroidism, 
deafness, and renal anomalies (HDR Syndrome), [14] and 
10p15.3 microdeletion syndrome [15, 16]. Thus, we believe 
that the large deletion in chromosome 10p may ascribe to 
the miscarriage in our study. Since the aborted tissues of 
the first three pregnancies are not available, the chromo-
somal abnormality types were unknown. However, a pre-
vious study also delineated a fetus who harbored trisomy 
10p and monosomy 10q with stillborn after delivery. [9]

In the present study, none of the relevant clinical 
phenotypes were observed due to early spontaneous 
abortion. Despite that, the OMIM genes in the 10p mon-
osomy involving CACNB2, [17] KLF6, [18] MLLT10, [19] 
RAB18, [20] WDR37, [21] ZEB1 [22] have been reported 
to be essential for embryonic critical organs development 
or neuronal development and migration, which may 
cause pregnancy loss. While, more work must be done to 
investigate the critical genes for embryonic development 
in this region.

Fig. 1 The result of chromosome karyotype in the prospective father. The arrows indicated the breakpoints of inversion of chromosome 10. The 
upper arrow elicited the breakpoint of 10p11.21 and the lower arrow indicated the location of 10q26.13, and the karyotype of the prospective 
father was described as 46,XY, inv(10)( p11.21q26.13)
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In conclusion, we presented a recombinant chromo-
some l0 resulting from the paternal pericentric inver-
sion inv(10)(p11.21q26.13), which was the first reported 
case of a large deletion of chromosome 10p associated 
with 10q trisomy that resulted in spontaneous abortion 

in the first trimester. Moreover, our study provides 
more information on the chromosome aberration of 
10p monosomy and 10q trisomy and also provides valu-
able data for prenatal genetic consultation.

Fig. 2 The SNP array detection results of in the fetus. The arrows indicated the locus of duplication and deletion segments. The red bar represents 
10p11.21p15.3 deletion and the blue bar indicates the duplication of 10q26.13q26.3
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