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Abstract 

Background:  The phenotypes of uniparental disomy (UPD) are variable, which may either have no clinical impact, 
lead to clinical signs and symptoms. Molecular analysis is essential for making a correct diagnosis. This study involved 
a retrospective analysis of 4512 prenatal diagnosis samples and explored the molecular characteristics and prenatal 
phenotypes of UPD using a single nucleotide polymorphism (SNP) array.

Results:  Out of the 4512 samples, a total of seven cases of UPD were detected with an overall frequency of 0.16%. 
Among the seven cases of UPD, two cases are associated with chromosomal aberrations (2/7), four cases (4/7) had 
abnormal ultrasonographic findings. One case presented with iso-UPD (14), and two case presented with mixed 
hetero/iso-UPD (15), which were confirmed by Methylation-specific multiplex ligation-dependent probe amplification 
(MS-MLPA) as maternal UPD (15) associated with Prader-Willi syndrome (PWS). Four cases had iso-UPD for chromo-
some 1, 3, 14, and 16, respectively; this is consistent with the monosomy rescue mechanism. Another three cases 
presented with mixed hetero/isodisomy were consistent with a trisomy rescue mechanism.

Conclusion:  The prenatal phenotypes of UPD are variable and molecular analysis is essential for making a correct 
diagnosis and genetic counselling of UPD. The SNP array is a useful genetic test in prenatal diagnosis cases with UPD.
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Background
Uniparental disomy (UPD) is the presence of a homolo-
gous chromosomes, or segments of chromosomes, origi-
nated from the same parent [1]. UPD can be recognized 
as two subtypes of heterodisomy (hUPD)—inheritance of 
two homologous but genetically different chromosomes 
from one parent, and isodisomy (iUPD), which is the 
inheritance of two copies of one parental chromosome. 
UPD may comprise the whole chromosome, or just part 
of it (segmental UPD) There are three primary mecha-
nisms by which UPD can occur: (i) trisomy rescue, where 
there is mitotic loss of the extra chromosome in the 

trisomy; (ii) monosomy rescue, where there is duplica-
tion of the single chromosome in the monosomy via non-
disjunction; and (iii) gamete complementation, where a 
gamete is disomic for the same nullisomic chromosome 
of the second gamete, by chance [2].

UPD results in imprinting disorders and monogenetic 
disease-related disorders [3]. Thus far, only five chromo-
somes have been defined as imprinted based on the asso-
ciated clinical phenotypes: chromosomes 6, 7, 11, 14, 15 
and 20. Approximately 35% of karyotyped UPD cases are 
associated with chromosomal aberrations (e.g. mosaic 
triploidy, mosaic trisomy, small supernumerary marker 
chromosomes (sSMCs) and unbalanced translocation 
and duplication [4–8]. And 65% of UPD cases present 
with a normal karyotype, which cannot be identified by 
traditional karyotype analysis but can be confirmed by 
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molecular markers or methylation patterns for the chro-
mosomal region of interest.

Here, we characterized 7 cases of UPD by performing 
single-nucleotide polymorphism-based array. This study 
aimed to provide useful information for prenatal diagno-
sis of UPD and detailed genetic counselling.

Results
Frequency and chromosomal origin of UPD
We studied seven cases of loss of heterozygosity (LOH) 
greater than 20 Mb, both segmental and whole chromo-
some cases with an overall frequency of 0.16% (Table 1). 
There was no known history of parental consanguinity in 
these cases, and we hypothesize that the homozygosity is 
determined by UPD. UPD occurs on chromosomes 1, 3, 
14, 15, and 16, respectively.

Chromosomal aberrations and phenotypes of UPD
Among the seven cases of UPD, two cases are associated 
with chromosomal aberrations (2/7). One case had UPD 
combined with a small supernumerary marker chromo-
some, and one case had UPD combined with trisomy 20 
(Fig. 1). The sSMC was trisomy for 5.39 Mb in the region 
1p13.2p11.2 (chr1:115,796,490_121,184,898). We deemed 
the sSMC to be harmless, and UPD (1) to be a variant 
of unknown significance. The formation was likely via 
trisomy rescue, thus the women chose to continue the 
pregnancy. A girl was born naturally at 39 + 5  weeks 
and was followed-up for 2  years with development and 
growth both normal. Aside from the two cases, the other 
five cases of UPD were detected by SNP array but not by 
karyotype analysis.

The case of UPD combined with trisomy 20 resulted in 
intrauterine fetal death in the first trimester; the remain-
ing six cases survived until the second or third trimester, 
indicating that UPD could be tolerated by the embryos. 
Four cases (4/6) had abnormal ultrasonographic findings.

UPD related syndromes caused by imprinting
In total, three cases involved imprinted chromosome 
14 and 15 (Fig.  2). iso-UPD(14) was identified in case 
3 and was presumed to occur mitotically followed by 
monosomy rescue with normal karyotype results. Case 
3 presented with multiple malformations on ultrasound, 
including peritoneal effusion, omphalocele, ventricular 
septal defect, and small gastric vesicle; this pregnancy 
was terminated at 34 + 3  weeks. Parental samples were 
not available for further tests to identify the UPD (14) 
parental origin. The couple decided to terminate the 
pregnancy at 34 + 3 weeks gestation.

Case 5 presented with mixed hetero/iso-UPD(15) of 
15q22.2q26.3 with multiple malformations on ultra-
sound, including scalp edema, chest wall edema, 

abdominal wall edema, bilateral pleural effusion, ascites, 
and bilateral kidney edema; this pregnancy was termi-
nated at 32 + 3 weeks. Case 6 presented with mixed het-
ero/iso-UPD(15) of 15q11.2q14 and 15q21.1q23 together 
with atrial septal defect; this pregnancy was not termi-
nated. A boy was born naturally at 39 + 6 weeks and was 
followed-up for 12 months. He had hypotonia and diffi-
culty feeding until nine months of age; after nine months, 
his feeding and appetite improved. He also had cryptor-
chidism. Those two cases of mixed hetero/iso-UPD (15) 
occurred meiotically followed by trisomy rescue, and 
were confirmed as maternal UPD (15) associated with 
PWS by MS-MLPA.

Mechanism of UPD
Four cases had UPD for an entire chromosome, chromo-
some 1, 3, 14 and 16, respectively; this is consistent with 
the monosomy rescue mechanism. Another three cases 
were consistent with a trisomy rescue mechanism. One 
case of mixed hetero/iso-UPD (15) had heterozygous 
alleles near the centromere of chromosome 15, suggest-
ing a meiosis I origin with one crossover of recombina-
tion. The other case of mixed hetero/iso-UPD (15) had 
LOH near the centromere and across the middle of the 
chromosome, suggesting meiosis II origin with three 
crossovers of recombination. Case 7 had homozygote 
alleles for chromosome 1 in its entirety combined with a 
5.39 Mb size small supernumerary marker chromosome 
arising from meiotic II non-disjunction.

Discussion
Here, we presented seven cases of UPD in 4512 prenatal 
cases using SNP array, with an overall frequency of 0.16%. 
UPD occurs on chromosomes 1, 3, 14, 15 and 16, respec-
tively. The frequency of UPD cases has not yet been 
exactly definited in the general human population. Of 
2019 patients with intellectual disabilities, developmen-
tal delay, abnormal growth, autism, and/or congenital 
abnormalities, UPD was detected in 0.54% [9]. Robinson 
detected the frequency of UPD in newborns is approxi-
mately 1 in 3500 [10]. UPD is also seen in different chro-
mosome-specific frequencies. UPD (15) is present in 1 
out of 80,000–100,000 births, paternal segmental UPD 
(11) is present in 1 out of 75,000 live births, and paternal 
UPD (6) is present in 1 out of 1,250,000 births.

Approximately 35% of karyotyped UPD cases are 
associated with chromosomal aberrations [4]. Some 
researchers have already found the frequencies of mosaic 
trisomy (39%) and small supernumerary marker chromo-
somes (17%) due to trisomic rescue, robertsonian (28%) 
and other translocations (6%), isochromosomes (3%), 
and other rearrangements correlated with UPD pres-
ence. Hence, UPD testing is advised when patients have 
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chromosomal rearrangements (numerical and structural 
malformations) involving imprinting-related chromo-
somes. In our survey, two cases are associated with chro-
mosomal aberrations (2/7, 28%).

The clinical phenotypes of UPD are variable, which 
range from unapparent to typical autosomal-recessive 
disease or syndromic imprinting disorder, depend-
ing on the parental origin and the specific chromo-
some or segment involved [11, 12]. In total, three cases 
of UPD involving imprinted chromosomes (14 and 15, 
respectively) were detected in this study. Chromosome 
14 carries a 1  Mb cluster of imprinted genes located in 
14q32, including paternally-expressed genes such as 
DLK1, RTL1, and DIO3, as well as maternally-expressed 
noncoding RNAs such as MEG3, RTL1as, MEG8, and 
numerous C/D box small nucleolar RNAs and microR-
NAs [13]. Maternal UPD (14) is associated with Temple 
syndrome, which is characterized by pre- and postnatal 
growth retardation, developmental delay, muscular hypo-
tonia, joint laxity, small hands and feet, truncal obesity, 

precocious or early onset of puberty, and adult short stat-
ure [14]. Paternal UPD (14) is associated with Kagami–
Ogata syndrome, which causes more serious phenotypes 
with polyhydramnios, thoracic dysplasia (coat hanger 
sign) with respiratory failure, abdominal defects, growth 
retardation, developmental delay, and facial abnormali-
ties with full cheeks and protruding philtrum [15].

UPD (15) is associated with Prader Willi Syndrome 
(PWS) and Angelman syndrome (AS) which represent 
the best examples of genomic imprinting in humans. 
Two cases of UPD (15) in our cohort were confirmed as 
maternal UPD (15) associated with PWS by MS-MLPA. 
PWS is a multisystem disorder characterized by severe 
infantile hypotonia with poor suck and failure to thrive 
as well as hypogonadism. The estimated prevalence of 
PWS is 1/10,000–1/15,000 [16]. Central to the PWS 
region is the SNURF-SNRPN gene, which is unmethyl-
ated on the paternally-inherited expressed allele and 
methylated on the maternally-inherited repressed allele 
[17]. PWS occurs as a result of an absent expression of 

Fig. 1  Cytogenetic and SNP array results of UPD combined with chromosomal aberrations. (a1) SNP array of case 7 was a partial duplication 
of chromosome 1 combined with UPD(1): arr 1p36.33p13.2(753541_115779865) × 2 hmz,1p13.2p11.2(115796490_121184898) × 3,1q21
.1q44(144828599_249202755) × 2 hmz. (a2) G-banding of case 7 revealed the karyotype 47,XX, + mar[53]/46,XX[22]. (b1, b2) SNP array of case 4: arr 
16p13.3q24.3(98642_90256266) × 2 hmz,(20) × 3
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paternally-expressed imprinted genes at chromosome 
15q11.2-q13 through paternal deletion of this region 
(65–75%), maternal UPD 15 (20–30%), or an imprinting 
defect (1–3%).

Different molecular approaches can be applied for UPD 
diagnostics, including microsatellite analyses, DNA-
based methylation test, bisulfite sequencing, multiplex 
ligation-dependent probe amplification (MLPA), and 
SNP-array [18–21]. SNP microarrays have the advantage 
of detecting long continuous regions of homozygosity 
(ROH) in addition to chromosome CNV. One limita-
tion of SNP microarray for diagnosing UPD is only able 
to detect iso-UPD but not hetero-UPD. Stephanie L. 
Santoro reported SNP microarray is likely able to detect 
over half of UPD (15), distinguish the specific subtype in 

approximately 80% of PWS [22]. Thus appropriate diag-
nostic algorithm is extremely important for laboratory 
testing of the UPD [23]. For example, for UPD (15), it 
is suggested that a DNA-based methylation test is first 
performed, which can detect more than 99% of individu-
als affected by PWS or Angelman syndrome (AS). DNA 
methylation analysis is the only technique that will diag-
nose PWS in all three molecular classes and differentiate 
PWS from AS in deletion cases, which is sufficient for 
clinical diagnosis and genetical counselling [24]. Inter-
phase fluorescence in  situ hybridization (FISH) analysis 
using corresponding specific probes should be followed, 
which can be replaced by SNP array as reported; if the 
latter does not detect a microdeletion in 15q11.2-12, 
a UPD test should be performed [25]. MLPA may be a 

Fig. 2  SNP array results and multiple ultrasonic malformations of three cases involved imprinted chromosome 14 and 15. (a1) SNP array revealed 
that case 3 arose by monosomy rescue with iso-UPD (14). (a2–a5) The multiple ultrasound malformations observed for case 3 included peritoneal 
effusion, omphalocele, ventricular septal defect, and small gastric vesicle. (b1) SNP array revealed that case 5 arose by trisomy rescue with mixed 
hetero/iso- UPD (15) from meiosis I non-disjunction error. (b2–b7) The multiple ultrasound malformations observed for case 5 included scalp 
edema, chest wall edema, abdominal wall edema, bilateral pleural effusion, ascites, and bilateral kidney edema. (c1) SNP array revealed that case 6 
arose by trisomy rescue with mixed hetero/iso-UPD (15) from meiosis II nondisjunction error. (d1) The copy number ratio of the 15q11 region was 1 
for two cases of UPD (15). (d2) Methylation ratio of the imprinted allele of chromosome 15q11 after digestion was 1 for two cases of UPD(15)
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good alternative for a quick and inexpensive test of an 
imprinting-related disorder [26]. The MS-MLPA assay 
combines both DNA methylation analysis and dosing 
analysis across the PWS region, and has been shown to 
investigate five distinct differentially methylated sites; it 
gives information on dosing in the 15q11.2 region [27]. 
However, UPD diagnosis by SNP array can be accom-
plished only if parental DNA is analyzed in the case of 
heterodisomy [9]. The limitation of our study that paren-
tal samples were not available for further tests to identify 
the parental origin of UPD remains.

Conclusion
The prenatal phenotypes of UPD are variable and molec-
ular analysis is essential for making a correct diagnosis 
and genetic counselling of UPD. The SNP array is a useful 
genetic test in prenatal diagnosis cases with UPD.

Methods
Study subjects
This study was approved by the institutional research eth-
ics committee of Wenzhou Central Hospital. All patients 
agreed to participate in the study and provided written 
informed consent. We retrospectively analysed a cohort 
of 4512 prenatal samples referred for genome wide SNP 
array that were taken at the Wenzhou Prenatal Diagno-
sis Center between 2012 and 2018. The pregnant women 
ranged in age from 19 to 48 years, with their gestational 
week between 8 and 30  weeks. The indications for pre-
natal diagnostic testing included advanced maternal age, 
high-risk serological screening, abnormal non-invasive 
prenatal DNA test, ultrasonographic abnormal indica-
tions, either parent carrying chromosome abnormality, 
and history of intrauterine fetal death or aborted fetuses.

SNP array analysis
Chromosomal microarray analysis was performed using 
the Illumina Human CytoSNP-12 array (Illumina, USA) 
according to the manufacturer’s instructions. The results 
were analyzed with Illumina BeadStudio software. All 
detected CNVs were compared with known CNVs in 
the scientific literature and publicly available databases: 
Database of Genomic Variants, DECIPHER database, 
International Standards for Cytogenomic Array, Online 
Mendelian Inheritance in Man and ClinGen Dosage Sen-
sitivity Map. All reported copy number variants (CNVs) 
were based on the National Center for Biotechnology 
Information human genome build 37 (hg 19).

UPD changes were detected by assessing for aberra-
tions in probe intensities (log R ratios) along with shifts 
in genotype frequencies of the SNP probes (B allele fre-
quencies) [8]. UPD is diagnosed when the log R ratio is 
zero, which equates to two copies. Meanwhile, in UPD, 

the B allele frequency is 0% and 100%, and only two hap-
lotypes can be seen. When UPD is visible near the telom-
eres, but not the centromere, meiosis I non-disjunction 
is indicated. When UPD is present at the centromeres, 
meiosis II non-disjunction is indicated. When UPD is 
present at the whole chromosome, mitosis non-disjunc-
tion is indicated.

Methylation‑specific multiplex ligation‑dependent probe 
amplification (MS‑MLPA) analysis
MS-MLPA probe sets and an ME028 Prader Willi/Angel-
man were supplied by MRC-Holland (http://www.mlpa.
com). MS-MLPA analysis was performed according to 
the manufacturer’s instructions. Data were analyzed 
using the Coffalyser.NET software developed by the man-
ufacturer. The Coffalyser.NET algorithm primarily runs 
two steps. First, the fluorescence of each probe is normal-
ized against the reference probes within each reaction 
(both undigested and digested reactions). For calculation 
of copy number, relative probe signals from each undi-
gested reaction of a test sample are compared with those 
obtained from the undigested reactions of reference sam-
ples. This comparison then allows for the determination 
of the relative copy number of the target sequences in a 
sample. For calculation of methylation status, the ratio 
obtained for each probe in the digested reaction is then 
compared to the ratio obtained in the corresponding 
undigested reaction. This ratio can be multiplied by 100 
to give a methylation percentage. Finally, the methylation 
percentages in a test sample are compared to the percent-
ages in the reference samples.

Karyotype analysis
Culture: (i) Villi were digested to produce cell suspen-
sions; the suspensions were centrifuged at 1200 r/min 
for 10 min. The supernatant was discarded after centrif-
ugation, leaving about 1–2 mL of cell suspension. Then, 
5  mL of amniocyte culture medium was added and the 
suspension was placed in an incubator at 37 °C with 5% 
CO2 for 9–10  days for growth. (ii) Twenty milliliters of 
amniotic fluid was centrifuged at 1200 r/min for 10 min. 
The supernatant was discarded after centrifugation, 
leaving about 1–2 mL of cell suspension. Then, 5 mL of 
amniocyte culture medium was added and the suspen-
sion was placed in an incubator at 37 °C with 5% CO2 for 
9–10  days for growth. (iii) One milliliter of cord blood 
was added into lymphocyte culture medium and placed 
in an incubator at 37  °C with 5% CO2 for 68–72  h for 
growth.

Karyotype: Conventional G-banded karyotyping at 
320–450 bands resolution was performed. Scanning 
was performed with a Leica GLS120 automated nuclear 
scanning system. Fifteen chromosome karyotypes were 

http://www.mlpa.com
http://www.mlpa.com
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counted, and five karyotypes were analyzed by two doc-
tors, according to the International System for Human 
Cytogenetic Nomenclature 2016 standard.
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Pallister Killian syndrome; hUPD: Heterodisomy; iUPD: Isodisomy; sSMCs: Small 
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