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Chromosomal instability associated with
adverse outcome: a case report of patient
with Nijmegen breakage syndrome and
rapidly developed T-NHL with complex
karyotype
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Abstract

Background: Nijmegen breakage syndrome (NBS) is a rare genetic disorder inherited in an autosomal recessive
pattern associated with an increased risk of developing lymphoproliferative disorders, mainly non-Hodgkin
lymphoma (NHL) and acute lymphoblastic leukemia (ALL). NBS patients are 50 times more likely to develop
malignancy than healthy controls. Moreover, in NBS, mortality rate from cancers, mainly lymphomas, is the highest
among all diseases associated with excessive fragility of chromosomes.

Case presentation: This work presents a patient previously diagnosed with Nijmegen breakage syndrome who
rapidly developed T-NHL despite of constant medical supervision. Cytogenetic karyotype and microarray tests
revealed complex aberrations, indicating enhanced chromosomal instability. Despite initial steroid therapy, the
patient passed away due to multiorgan failure.

Conclusions: The lack of well-established diagnostic procedures in NBS patients make it difficult to determine any
therapeutic target or predictive marker. Moreover, anticancer treatment is the biggest challenge in NBS patients
due to therapy-related toxicity and immunodeficiency. Our case indicates the importance of identifying parameters
useful in prognosis of disease outcome, as main risk factor affecting overall survival in NBS patients is an extremely
high incidence of malignancy development.
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Introduction
Nijmegen breakage syndrome (NBS) is a rare genetic
disorder inherited in an autosomal recessive pattern as-
sociated with an increased risk of developing lympho-
proliferative disorders, mainly non-Hodgkin lymphoma
(NHL) and acute lymphoblastic leukemia (ALL) [1, 2].

Moreover, NBS patients are 50 times more likely to de-
velop malignancy than healthy controls [3]. The disease
is caused by mutations in NBS1 gene located on
chromosome 8q21. The most commonly observed NBS
mutation, affecting approximately 90% of all NBS cases,
is 657_661del5 in exon 6 of NBN gene [1, 4]. Further-
more, most of NBS patients are of Slavic origin, thus this
particular alteration is called Slavic mutation [4]. NBS
seems to occur worldwide, but the majority of cases
were reported among Central European and Eastern
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European populations (Poland, Czech Republic, Ukraine)
with relatively high (1/177) carrier frequency [1, 5–7].
Characteristic cellular features of the NBS include

increased telomere loss and sensitivity to ionizing ra-
diation, and chromosomal instability resulting from
spontaneous chromosome aberrations, usually affect-
ing locus on chromosomes 7 (T-cell receptor (TCR)
gene cluster) and 14 (immunoglobulin heavy chain
gene cluster) [4]. Among the clinical features of NBS
are progressive microcephaly, dysmorphic facial fea-
tures (including sloping forehead, prominent nose,
small mandible, long philtrum), dysmorphic ears, mild
growth retardation and immunodeficiency [5, 7]. In
NBS, mortality rate from cancers, mainly lymphomas,
is the highest among all diseases associated with ex-
cessive fragility of chromosomes [8, 9].

Case report
A 4-year-old boy was admitted to Department of Gen-
etic Diagnostics due to microcephaly, mild growth re-
tardation and dysmorphic facial features, such as sloping
forehead, large ears and prominent nose. There were no
comorbidities, as well as no significant findings in the
patient’s family history. To assess the somatic karyotype
of patient culture of blood samples was performed under
standard conditions of 37 °C and 5% CO2 in PB MAX
Karyotyping Medium (Thermo Fisher Scientific,
Waltham, MA, USA). To stop cell division at mitosis, a
mitotic inhibitor (Colchicyne Solution 10 μg/μl in NBSS,
Thermo Fischer Scientific, Waltham, MA, USA) was
added to the cell culture. Then, Carnoy’s solution (3:1
methanol:acetic acid) was used to fixation of cells. GTG
band staining was performed and the karyotype of pa-
tient was assessed using Axio Imager.Z2 microscope
(Zeiss, Oberkochen, Germany) and Applied Spectral Im-
aging (Carlsbad, CA, USA) software. The karyotype was
described according to The International System for Hu-
man Cytogenetic Nomenclature (ISCN). Cytogenetic
analysis revealed normal karyotype, including no cyto-
genetic abnormalities involving chromosomes 7 and 14.
No chromosomal instability was found in any of the
chromosomes, thus further analysis was performed using
molecular techniques (Sanger method, ABI 3130, Ap-
plied Biosystem, MA, USA). The patient was diagnosed
with Nijmegen breakage syndrome as genetic test con-
firmed homozygotic deletion c.657_661delACAAA in
the NBN gene.
After 2 years, the boy was admitted to the Department

of Pediatric Hematology, Oncology and Transplantology,
Medical University of Lublin, Poland, due to pneumonia.
The boy reported pain lasting 3 weeks in the lower ex-
tremities and swollen submandibular nodes from a week.
The patient’s condition was defined as severe, as his
examination revealed leukocytosis (white blood cells =

50,000/μl), lymphadenopathy and the presence of a
tumor in the mediastinum. Myelogram presented 54%
blasts with T-NHL phenotype: TCRα/β– TCRγ/δ+,
CD45+, CD7+, cytCD3+, CD3+, CD19dim+, CD5dim+,
CD2+, CD45RA+, CD45RO+, CD8+, CD33+, CD13+,
CD117dim+, CD123dim+, CD16dim+, CD11c+. Ultra-
sound examination of the neck revealed lymph node
conglomerates on both sides with reduced echogenicity
and rounded shape. Lymph node biopsy was performed
for histopathological examination, which showed hyper-
plasia of lymphoblastic morphology. Lymphoblastic cells
revealed a positive expression of CD3c, CD7, CD2, CD5,
CD4, CD8, moderate CD1a, TdT, CD56 and CALLA ex-
pression, and low CD79a expression. The result indi-
cates cortical type of T cell lymphoblastic proliferation.
The boy was diagnosed with stage IV T-NHL.
Moreover, 24-h unstimulated cell culture of bone mar-

row samples in standard conditions in MAX Bone Mar-
row Medium (Gibco, Thermo Fischer Scientific,
Waltham, MA, USA) was performed to assess the som-
atic karyotype of patient. GTG band staining (Fig. 1a)
and fluorescence in situ hybridization (FISH) test were
performed with the use of probes: BCR/ABL1, KMT2A,
ETV6/RUNX1 (Vysis, Abbot Molecular, Illinois, USA).
The arrangement from ETV6/RUNX1 probe suggested
ETV6 deletion (Fig. 1b). The arrangement of signals
from other probes used was correct (Fig. 1c and d).
Cytogenetic karyotype revealed many aberrations, but it
was difficult to recognize and assess correct result from
karyotype. Thus, microarray analysis was performed to
improve genetic diagnosis (CytoScan HD, Applied Bio-
systems, part of Thermo Fischer Scientific, Waltham,
MA, USA). Tests revealed additional alterations in the
form of gained copies (4q32-q35, 6q22-q27, 10p11-p15)
and loss regions (9p21-p24, 5q21-q35) (Fig. 2). Cytogen-
etic and microarray results were partially confirmed by
FISH tests (Fig. 3). Finally cytogenetic result was the
following: 45,XY,-1,dup(1)(p32p34),der(3)t(1;3)(q12;q22),
der(5)t(5;10)(q21;p11),der(9)t(4;9)(q32;p21),der(11)t(1;11)
(p32;p13),del(12)(p13),der(16)t(6;16)(q22;p13)[10]/46,
XY[15] (Fig. 4 and Table 1). Despite initial steroid ther-
apy, the patient passed away after 21 days due to multior-
gan failure. Medical history of patient revealed that he
was not exposed to radiation or any genotoxic agents
since NBS diagnosis.

Discussion and conclusions
NBN gene encodes for a protein (nibrin), which is a part
of the Mre11/Rad50/NBN (MRN) nuclear protein com-
plex. MNR function is crucial for DNA repair (especially
double strand breaks, DSBs), recombination processes
and checkpoint arrest [10, 11]. Maintaining genome in-
tegrity is important for any organism, as the resulting
modifications are associated with an increased risk of

Włodarczyk and Lejman Molecular Cytogenetics           (2020) 13:35 Page 2 of 9



Fig. 1 Cytogenetic analysis of bone marrow cells at diagnosis of T-NHL in 6-year-old male. (a) The karyogram (GTG-banding) showing complex
karyotype of the patient: 45,XY,-1, dup(1)(p32p34),der(3)t(1;3)(q12;q22),der(5)t(5;10)(q21;p11),der(9)t(4;9)(q32;p21),der(11)t(1;11)(p32;p13),del(12)(p13),
der(16)t(6;16)(q22;p13)[10]/46,XY[15] (b,c,d) Results of FISH tests with probes: ETV6/RUNX1, BCR/ABL1 and KMT2A. FISH was performed on
metaphases and interphase nuclei using probes (Cytocell Ltd., Oxford Gene Technology, Cambridge, United Kingdom) according to the
manufacturer’s recommendations. Images were captured by an Olympus BX41TF microscope equipped with a Jenoptik camera and analysed
with Isis Software (MetaSystems)

Fig. 2 Karyoview from microarray test and a scheme presenting chromosomal aberrations in patient. Microarray results revealing partial gains of
overlapping regions on chromosomes 1p 8,931,529-67,365,806 bp (1p36.23-p31.3), 4q 155,500,158-190,957,473 bp (4q31.3-q35.2), 6q 115,144,178-
170,919,482 bp (6q22.1-q27) and 10p 100,026-38,258,848 bp (10p15.3-p11.1). Moreover, regions of overlap of deletions were also found on
chromosomes 1p 849,466-8,096,240 bp (1p36.33-p36.23) and 1 70,493,564-145,289,186 bp (1p31.12-q21.1), 5q 100,821,228-180,719,789 bp (5q21.1-
q35.3), 9p 203,861–28,849,504 bp (9p24.3-p21.1), 11p 230,615-35,363,338 bp (11p15.5-p13), 12p 173,786-22,885,159 bp (12p13.33-p12.1) and 16p
85,880-10,023,421 bp (16p13.3-p13.2). Asterisks correspond to deletion (red colour), duplication (blue colour) and loss of heterozygosity
(purple colour)
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Fig. 3 Images of the FISH results revealing chromosomal aberrations. (a) Image of the FISH results with the whole chromosome painting (WCP) 1
and 3 probes (Cytocell Ltd., Oxford Gene Technology, Cambridge, United Kingdom) revealing t(1;3). (b) Chromosome analysis demonstrating
derivative chromosomes 3 der(3)t(1;3)(q12;q22) and chromosome 1. (c) Image of the FISH results with the LSI CSF1R/D5S23, D5S721 Dual Color
probe (Vysis, Abbot Molecular, Illinois, USA) revealing del(5q33-q34). (d) Chromosome analysis demonstrating abnormal chromosome 5 with
deletion of 5q33-q34. (e) Image of the FISH results with the STIL Break Apart Probe (Empire Genomics, New York, USA) revealing STIL duplication.
(f) Image of the FISH results with WCP4 probe (Cytocell Ltd., Oxford Gene Technology, Cambridge, United Kingdom) revealing t(4;9). (g) Image of
the FISH results with WCP5 and WCP10 probes (Cytocell Ltd., Oxford Gene Technology, Cambridge, United Kingdom) revealing t(5;10). (h) Image
of the FISH results with WCP6 and WCP16 probes (Cytocell Ltd., Oxford Gene Technology, Cambridge, United Kingdom) revealing t(6;16). Images
were captured by an Olympus BX41TF microscope equipped with a Jenoptik camera and analysed with Isis Software (MetaSystems)
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mutagenesis or carcinogenesis. In physiological condi-
tions, double strand breaks are observed during DNA
replication and meiotic recombination and in the pro-
cesses of development of acquired immunity, as DNA
DSBs occur in V(D) J recombination during early B and
T cells differentiation and immunoglobulin class switch
in mature B cells [4, 7].
NBN mutation results in the fragmentation of nibrin

into two nonfunctional parts: the 26 kDa N-terminal
fragment and the 70 kDa fragment, which retains the re-
sidual nibrin function [4]. Homozygous carrier of this
mutation is associated with very early incidence of
lymphomas, sarcomas and gliomas [4, 12, 13]. However,
in Slavic populations, heterozygous carriers of the
657del5 mutation or the molecular variant R215W of
the NBN gene are often observed [1]. Population studies
revealed that heterozygous carriers of the NBN mutation
are also at increased risk of developing lymphoprolifera-
tive cancers [1, 14].
Early diagnosis of NBS is crucial as it prevents from

severe recurrent infections and unnecessary exposure to
radiation during diagnostics procedures [4, 7]. Due to
the evolution of monoclonal gammopathy towards lym-
phoproliferative disorders in immunocompromised pa-
tients, monitoring of this parameter may be useful in
determining the risk of developing malignancies in NBS
patients [4]. Nevertheless, an improvement of immune
system is needed to avoid further malignancies in pa-
tients with NBS and NHL.
From the moment of diagnosis, the patient was under

constant medical supervision, and yet he developed

advanced NHL as the consequence of extremely high
chromosomal instability. Predisposition to malignancies,
including lymphoid malignancies, is associated with
chromosomal instability, as NBS patients have 250-fold
risk of developing lymphomas [1, 4]. Several non-specific
symptoms, such as nodal enlargement and fever are
thought to be connected with infection disease in NBS
patients. Therefore, in NBS cases, advanced stages of
lymphomas with multiorgan involvement are commonly
observed [14, 15]. High incidence of lymphoma relapse,
reduced treatment tolerance and delayed diagnosis of
lymphoproliferative disorders in NBS patients are the
cause of poor prognosis [15, 16]. The distribution of B
and T cell lymphoma in NBS patients was described in
several studies to date [17]. We present for the first time
a case of patient with NBS who developed T-NHL in
relatively short time despite medical geneticists’
supervision.
Chromosomal instability is associated with develop-

ment of complex genetic markers in pre-cancer cells.
Moreover, simultaneous acquisition of structural
chromosomal aberrations and mutation enables tumor
evolution, thus leading to poor outcome [18]. Despite
the karyotype of NBS patients is generally normal, a lot
of abnormalities in the form of aneuploidies, structural
rearrangements and marker chromosomes may be ob-
served in 10–60% of cells [4].
As NBN mutations affects maturation and function of

T and B cells, NBS patients are high susceptible to infec-
tions, mostly involving respiratory system [4]. Moreover,
due to bone marrow failure, severe infections, cardio-

Fig. 4 The scheme of chromosomal aberrations in patient based on cytogenetic analysis, microarray tests and FISH results prepared using CyDAS
software (http://www.cydas.org/OnlineAnalysis/, Duesseldorff, Germany). Hash represents derivative chromosomes
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and nephrotoxicity, some forms of chemotherapy (in-
cluding anthracyclines methotrexate and alkylating
agents) and radiotherapy should be limited in the treat-
ment of patients with NBS [4, 19]. Hematopoietic stem
cell transplantation seems to be a last treatment option
in NBS patients in whom standard chemotherapy proto-
cols have failed [19].
The lack of well-established diagnostic procedure in

NBS patients make it difficult to determine any thera-
peutic target or predictive marker [19]. Furthermore,
anticancer treatment is the biggest challenge in NBS
patients due to therapy-related toxicity and
immunodeficiency.
The main risk factor affecting overall survival in NBS

patients is an extremely high incidence of malignancy
development. Most of NBS patients die in first decade of
life due to unsuccessful cancer treatment, thus novel
therapeutic intervention development is of great clinical
importance [4, 19]. Therefore, our case indicates the ne-
cessity of identifying parameters useful in the prognosis
of NBS patients.
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