
SHORT REPORT Open Access

Identifying novel genetic alterations in
pediatric acute lymphoblastic leukemia
based on copy number analysis
Jéssica Almeida Batista-Gomes1 , Fernando Augusto Rodrigues Mello Jr1, Edivaldo Herculano Corrêa de Oliveira2,
Michel Platini Caldas de Souza2, Alayde Vieira Wanderley3, Laudreisa da Costa Pantoja3,
Ney Pereira Carneiro dos Santos1, Bruna Cláudia Meireles Khayat1 and André Salim Khayat1*

Abstract

Copy number variations (CNVs) analysis may reveal molecular biomarkers and provide information on the
pathogenesis of acute lymphoblastic leukemia (ALL). We investigated the gene copy number in childhood ALL by
microarray and select three new recurrent CNVs to evaluate by real-time PCR assay: DMBT1, KIAA0125 and PRDM16
were selected due to high frequency of CNVs in ALL samples and based on their potential biological functions in
carcinogenesis described in the literature. DBMT1 deletion was associated with patients with chromosomal
translocations and is a potential tumor suppressor; KIAA0125 and PRDM16 may act as an oncogene despite having a
paradoxical behavior in carcinogenesis. This study reinforces that microarrays/aCGH is it is a powerful tool for
detection of genomic aberrations, which may be used in the risk stratification.
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Introduction
Acute lymphoblastic leukemia (ALL) is the most common
cancer in children [1]. Leukemia represents the ninth
most common cancer in Brazil and the fifth most frequent
in the north region [2]. Advances in cytogenetics and
molecular cytogenetics has allowed the identification of
genetic aberrations in more than 80% of ALL cases [3].
Establishing genetic background in ALL patients is im-
portant for the diagnosis, risk classification and thera-
peutic interventions [3]. However, some patients do not
have an established chromosomal aberration, which com-
plicates the risk classification.
Recent analysis has shown that copy number variations

(CNVs) are common in ALL and leukemia in general,
especially in genes involved in transcription, cell cycle
regulation and B-cell differentiation, (e.g., CDKN2A/B,

IKZF1, ETV6, EBF1, PAX5, BTG1 and PAR1) [4]. Add-
itional CNVs could be helpful to refine ALL prognostic.
The prognostic effect of CNVs depends on the other
factors, such as the presence of additional molecular or
cytogenetic aberrations; this situation reinforces the
need to analyze these combined alterations [5].
The aim of this report is to assess and evaluate CNVs

identified by aCGH from a cohort of Brazilian children
with ALL. Three new recurrent CNVs were further eval-
uated by qPCR. We highlight that DMBT1, KIAA0125
and PRDM16 were chosen due to high frequency of ab-
errations in ALL samples and based on their biological
functions as well the data present in the literature.

Methods
Patients
A total of 16 ALL pediatric patients (5 ± 3 years) treated
at Octávio Lobo Children’s Cancer Hospital were se-
lected for aCGH analysis. Additional 84 ALL pediatric
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samples were used as validation group in copy number
qPCR assay. These patients were classified by immuno-
phenotyping and morphology. Gene fusions were investi-
gated by reverse transcription polymerase chain reaction
(RTq-PCR) (Tables 1 and 2). The samples were collected
before cancer treatment between 2017 and 2019.
The age at diagnosis and white blood cell (WBC)

count were the criteria for assigning prognostic risk of
ALL, according to the National Cancer Institute (NCI):
1) high risk, WBC count greater than 50 × 109 cells/μL,
age 1 year or less, or age 10 years or more; and 2) standard
risk, WBC count 50 × 109 cells/μL or less, or between 1
and 10 years of age. The patients with BCR-ABL1 or MLL-
AF4 also were assigned to the NCI high risk group.
Written consent forms were obtained from all parents of
patients. This study was approved by hospital ethics com-
mittee (CAAE: 00905812.1.0000.00.18).

Array comparative genomic hybridization
Genomic DNA was extracted from peripheral blood by
Pure Link Genomic DNA Mini Kit (Invitrogen, California,
USA). aCGH was performed using Agilent 4x180k CGH+
SNP microarray (Santa Clara, USA). After DNA extrac-
tion, a restriction enzyme digestion step and labeling with
fluorochrome cyanine 5 were performed using random
primers and exo-Klenow fragment DNA polymerase.
DNA control was labeled with fluorochrome cyanine 3.
DNA samples from the patient and control were com-
bined and hybridized on the microarray. Data were ana-
lyzed using the software Agilent’s CytoGenomics v5.0.

Real-time quantitative PCR
TaqMan Copy Number Assay (Applied Biosystems,
California, USA) was used to assess copy number for
DMBT1, KIAA0125 and PRDM16. Briefly, 1 μL of 10 ng
DNA was added to 5 μL of TaqMan Universal Master Mix
no UNG, with 0.5 μL of each probe and 3 μL of ultra-pure
water. RNase P was used as a control. The amplification
protocol consisted of: denaturation at 95 °C for 10min,
followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min.
Relative quantification was determined using the 7500
Real-time PCR system and all samples were analyzed in
quadruplicate. After amplification, we imported the ex-
periment results containing threshold-cycle values for the
copy number and reference assay into the Copy Caller
Software v2.0 for post-PCR data analysis as previously
described [6].

Statistical analysis
Fisher’s exact test was used to compare the distribution
of aberrations between subgroups (high or standard risk;
positive or negative for chromosomal translocation) and
pathological features of the patients; Odds ratio (OR)
with a 95% confidence interval (CI) were also calculated
through the statistical program BioEstat® v5.0 [7]. p-
values less than 0.05 were considered significant.

Results
aCGH profiling identifies recurrent alterations
aCGH date were available for all 16 cases, the average of
copy number variations (CNVs) was 8.3 per sample.
Gains were the most frequent event, the most frequently
gained regions were on chromosomes 14 (q32.33) and
10 (q26.13), these regions include KIAA0125 (a lncRNA)
and DMBT1 genes, respectively. Frequent losses were
identified on chromosome 7 (7p12.2) and 9 (p21.3), which
includes IKZF1 and CDKN2A/B genes, respectively.
Recurrent CNVs included gains of cytobands 14q

(93.75%), 2p (68.75%), 17q (62.5%), 9q (56.25%), 10q

Table 1 Characteristics of pediatric patients with ALL included
in the study

Characteristic aCGH(n = 16) qPCR (n = 84)

Male: female 08:08 49:35

Median age (y) 6.5 7.4

Median WBC count (× 109/L) 73 69.4

Immunophenotype

B 15 80

T 1 4

Chromosomal alteration

TCF3-PBX1 (n) 6 15

BCR-ABL1 (n) 1 9

MLL-AF4 (n) 5

ETV6-RUNX1 (n) 7

SIL-TAL1(n) 3

NCI risk

High (n) 7 30

Standard (n) 9 54

Table 2 Nucleotide sequence of RTq-PCR primers

Genes Primers (5′-3′) Size (bp) Position Exons

TCF3 CTACTCCCCGGATCACTCAA 20 1086–1105 13

PBX1 AGGCTTCATTCTGTGGCAGT 20 3893–3912 2

MLL CGCCCAAGTATCCCTGTAAA 20 4071–4090 8

AF4 GAGCATGGATGACGTTCCTT 20 1546–1565 8

BCR TCGCAGAACTCGCAACAGT 19 1707–1725 1

ABL ACACCATTCCCCATTGTGAT 20 284–303 3

ETV6 TCTCTCATCGGGAAGACCTG 20 1191–1210 5

RUNX1 TGCGGTAGCATTTCTCAGC 19 619–637 5

SIL TCCTACCCTGCAAACAGACC 20 73–92 1

TAL1 AGGCGGAGGATCTCATTCTT 20 1250–1269 4
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(56.25%), 19q (56.25%), 22q (56.25%), 1p (50%), 7q
(50%), 8p (50%) and 21q (50%); losses involving 7p
(62.5%), 9p (56.25%), 15q (47.75%), 4q (37.5%) and 12q
(31.25%). The list of recurrent CNVs found in at least
two samples is provided in Table 3.
All patients have alteration in at least one of the main

genes associated with ALL; ETV6, RUNX1, IKZF1,
KMT2A (MLL) and BTG1 (Table 3.). The median of
alterations in standard (SR) and high risk (HR) group
were 56.6 (±15.4) and e 52.2 (±14.2), respectively. We
confirmed the association of CDKN2A/B losses with
positive cases for TCF3-PBX1 or BCR-ABL1 (p < 0.05).
There was no statistically significant difference in the
number of CNVs between patients with (CT+) or with-
out (CT-) chromosomal translocation.

CNV evaluation by real-time qPCR
To validate aCGH results DMBT1, KIAA0125 and
PRDM16 genes were analyzed by qPCR. Genes were
chosen due to the high frequency of aberrations found
in samples and based on their biological function
(mainly transcriptional regulation) described in litera-
ture. It is noted that the CNV found in these genes
are described here for the first time in leukemia, es-
pecially in ALL. The aberrations of the three selected
genes identified from aCGH and qPCR were illus-
trated in Fig. 1.
The results of qPCR were compared between positive

(CT+) or negative (CT-) for gene fusions subgroups.

DMBT1 deletion was observed in 74% of patients (n =
62; 97.4% of CT+ and 53% of CT-); KIAA0125 amplifica-
tion was detected in 59% of cases (n = 50; 95% of CT+
and 29% of CT-), these amplifications were more fre-
quent in cases CT+; while PRDM16 was deleted in 50%
of patients (n = 42; 87% CT- and 8% CT+), amplifica-
tions were observed in 42% of samples, which only cor-
respond to CT+ cases (Fig. 2).
Curiously, 50% (25/50) and 69% (24/35) of KIAA0125

and PRDM16 amplifications, respectively, were high-
level amplifications (> 10 copies), however, classification
of cases according to the level of amplification did not
result in any significant association.
The frequency of aberrations in DMBT1, KIAA0125

and PRDM16 according to NCI risk group, gender, age
and cytogenetic findings are show in Tables 4 and 5
Statistical analysis showed that DMBT1 deletion was
more common in patients with > 1 to ≤10 years (OR =
3.38; 95% IC = 1.15–9.89) and more common in NCI-SR
cases (OR = 0.198; 95% IC = 0.07–056). DMBT1 deletion
also was associated with CT+ samples (OR = 33.2; 95%
IC = 4.19–263.55) (Tables 4 and 5).
KIAA0125 amplification was associated with CT+

cases (OR = 45.5; 95% IC = 9.54–217-16). PRDM16 gene
deletion was associated with NCI-HR patients (OR =
91.4; 95% IC = 11.32–738.6) and CT- cases (OR = 0.01;
95% IC = 0.00–0.05) (Tables 4 and 5), while amplifica-
tion was related to CT+ samples (p-value = < 0.001), data
not shown in Tables 4 and 5).

Table 3 The most frequent copy number variations found in pediatric ALL by aCGH

Frequency % (n = 16) Chromosome Reference region Variant type Genes involved

94 14 q32.33 Amp KIAA0125a

75 14 q11.22 Del Several genes

62.5 7 7p12.2 Del IKZF1

56.25 9 p21.3 Del CDKN2A/B,MTAP

56.25 10 q26.13 Amp DMBT1a

56.25 22 q11.22 Amp MIR650, IGLL5

50 15 q11.1 Del HERC2P3

50 1 p36.32 Amp PRDM16a

50 19 q13.32 Amp KLC3, ERCC2

37.5 4 q13.2-q13.3 Del UGT2B4

31.25 12 q21.33-q22 Del BTG1

25 13 q14.2 Del RB1

19 7 p14.1 Del TRGC2, TARP

19 11 q23.3 Del KMT2A

19 12 12p13 Del ETV6

12.5 7 p21.3-p15.2 Del Several genes

12.5 3 q29 Del DLG1

6.25 21 iAMP21 Amp RUNX1
aAlterations have never been described in literature for ALL. Amp amplification. Del deletion
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Discussion
All patients analyzed by aCGH showed a heterogeneous
copy-number pattern. We identified 133 CNVs, 18 them
involved the most frequent changes already known or
not yet related to ALL (Table 3). Unlike previous studies,
here, amplifications were more frequent than deletions,
possibly due the small sample number and the presence
of hyperdiploid cases. On the other hand, similar to
antecedent studies [4, 8, 9], the more frequently altered
genes were related to cell cycle regulation (ETV6), tumor
suppression (CDKN2A/B), apoptosis regulation (BTG1)
and others (Table 3).
In agreement with the literature, in our study deletions of

CDKN2A/B were associated with positive cases for TCF3-
PBX1 or BCR-ABL1. CDKN2A/B are tumor suppressor

genes acting in cell growth regulation and apoptosis [10].
The deletion of these genes are associated with poor prog-
nosis, high white blood cell count and older age at diagnosis
and BCR-ABL1 or TCF3-PBX1 translocations [11–13]; all
characteristics found in our study group.
The aCGH study also identified for the first-time re-

current alterations of DMBT1, KIAA0125 and PRDM16
in ALL (Table 3). These genes were verified by qPCR in
a larger sample number.
High amplification frequencies observed in aCGH was

confirmed by qPCR just for KIAA0125. For the DMBT1
and PRDM16 deletions were prevalent in qPCR assays.
This divergence is probably due to differences in sample
size and by the presence of trisomy of chromosomes 1
and 10 in cases with copy number variation in PRDM16

Fig. 1 Frequency of copy number variation of PRDM16, KIAA0125 and DMBT1 identified by aCGH and qPCR. aCGH for 16 samples; qPCR for 48
samples. AMP: amplification; DEL: deletion

Fig. 2 Copy number of PRDM16, KIAA0125 and DMBT1 in ALL samples identified by qPCR
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Table 4 Frequency of alterations according to characteristics of patients

DMBT1 deletion KIAA0125 amplification PRDM16 deletion

Present Ausent Present Absent Present Absent

NCI-HR 16 14 19 11 41 13

NCI-SR 46 8 31 23 1 29

p-value 0.0036* 0.6483 p < 0.001*

≤1 years 5 2 4 3 3 4

> 1 to ≤10 years 44 10 34 20 26 28

> 10 years 13 10 12 11 13 10

p-value 11 0.6131 0.9994 1

p-value 22 0.6693 1 0.6746

p-value 33 0.0433* 0.4497 0.6200

WBC > 50 16 5 16 5 8 13

WBC≤ 50 46 17 34 29 34 29

p-value 1 0.0802 0.4568

Leucopenia 5 0 5 0 0 5

Leucocytosis 54 18 40 32 37 35

p-value 0.3336 0.0720 0.0554

Male 38 11 31 18 21 28

Female 24 11 19 16 21 14

p-value 0.4515 0.5002 0.1839

NCI-HR NCI-High risk; NCI-SR NCI Standard risk; WBC White blood count. 1 ≤ 1 years versus > 1 to ≤10 years; 2 ≤ 1 years versus > 10 years; 3 > 1 to ≤10 years versus
> 10 years. *Significant difference between groups with and without aberrations, p ≤ 0.05, Fisher’s exact test

Table 5 Frequency of alterations according to cytogenetic subgroups

DMBT1 deletion KIAA0125 amplification PRDM16 deletion

Present Ausent Present Absent Present Absent

BCR-ABL1 9 0 9 0 1 8

Absence 53 22 41 34 41 34

p-value 0.1036 0.0032* 0.0294*

ETV6-RUNX1 7 0 7 0 0 7

Absence 55 22 43 34 42 35

p-value 0.1817 0.0381* 0.0119*

MLL-AF4 5 0 4 1 1 4

Absence 57 22 46 33 41 38

p-value 0.3195 0.6438 0.3597

TCF3-PBX1 14 1 14 1 1 14

Absence 48 21 36 33 41 28

p-value 0.0625 0.00031* 0.0003*

SIL-TAL1 3 0 3 0

Absence 59 22 47 34 0 3

p-value 0.5634 0.2685 42 39

0.2410

CT+ 38 1 37 2 3 36

CT- 24 21 13 32 39 6

p-value p < 0.001* p < 0.001* p < 0.001*

CT+ chromosome translocation positive; CT chromosome translocation negative. *Significant difference between groups with and without aberrations, p ≤ 0.05,
Fisher’s exact test
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and DMBT1, respectively. But new significant associa-
tions were observed for the three genes.
The high frequency of DMBT1 deletions observed here

support aCGH results. DMBT1 encoding protein be-
longs to the scavenger receptor cysteine rich (SRCR)
super family involved in mucosal immune defense, epi-
thelial differentiation and tumor suppression [14, 15].
Many studies have showed that DMBT1 deletion or in-
activation lead to tumorigenesis by regulating infiltration
and metastasis of tumor cells [16]. Altered expression in
certain stages of carcinogenesis was identified in different
tumor types [17–19]. We found DMBT1 deletion associ-
ated with standard risk and CT+ cases. It is possible that
DMBT1 deletion have a more specific function in develop-
ment of ALL cases without a high risk chromosomal ab-
normality (which are mostly classified as standard risk),
since only 14% of CT+ cases have high risk biomarker
(BCR-ABL1 or MLL-AF4). Thus, DMBT1 loss collaborate
as a secondary event in the progression of disease in CT+
patients, since it is know that chromosomal translocations
are primary aberrations [13]. Although DMBT1 absence is
considered a malignancy marker in many epithelial can-
cers, we reported for the first time DMBT1 deletion in
ALL and we suggest that DMBT1 may be also involved in
hematologic malignancies development.
LncRNAs are involved in gene expression at epigen-

etic, transcriptional and post-transcriptional level and
are considered a strong promise as a biomarker and
therapeutic target [20]. In this study, we found that
KIAA0125 amplifications were more common in CT+
patients while in CT- cases, deletions were more preva-
lent. Recurrent KIAA0125 amplifications were statisti-
cally associated with CT+ cases. CNV or abnormal
expression of KIAA0125 were observed in many tumor
types [21–26]. Several recent studies in lncRNAs have
shown that they have a critical role in different cancers
acting as an oncogene or suppressor, in this sense, the
role of KIAA0125 in carcinogenesis may be cell-type
dependent [27]. In colon cancer development, KIAA0125
may contribute via the regulation of BCL2 expression by
sponging hsa-miR-29b-3p or regulating PI3K-Akt signal-
ing [28]. In addition, Forero-Castro et al. [4] identified
losses on 14q32.33 (where KIAA0125 is located) related
to overall survival of children ALL with leukocytosis. In
14q32 there are miRNA clusters that may influence the
genes expression levels involved in lymphoid B-cell trans-
formation and differentiation, suggesting that 14q32 losses
could be used as a diagnostic marker [4, 29]. Hornung R.
et al. (2018) have recently shown that KIAA0125 could
play a mediating role in the influence RUNX1 gene fusions
have on survival of LMA [30].
It is also presumable that KIAA0125 may act as

miRNA sponges regulates mRNAs expression levels also
in ALL, however the exact mechanism of action and

possible target genes need to be further investigated.
These findings along with our data leading to the as-
sumption that KIAA0125 plays important role in devel-
opment of leukemia and reinforce previous studies that
suggested that lncRNAs may be utilized as diagnostic
and prognostic markers in leukemia [20].
PRDM16 is characterized by the combination of a con-

served N-terminal PR domain and a variable number of
zinc fingers [31], it encodes a SMAD binding protein that
may repress SMAD-mediated transcription, also functions
as a modulator of TGF-beta signaling and exhibit methyl-
transferase activity [32, 33]. PRDM16 is involved in various
biological processes including maintenance of brown adipo-
cytes and hematopoiesis [34, 35]. Two main PRDM16
isoforms are the full-length and the PR-lacking generated
by alternative splicing or alternative use of different pro-
moters [36, 37]. Notably, PRDM proteins sometimes exert
opposing effects on tumor development [38, 39].
In the present study most cases have PRMD16 deletions

(50%), however in 90% of CT+ patients this gene is highly
amplified (21 samples with > 10 copies) and significantly
related to presence of gene fusions. Overexpression of
PRDM16 in AML is associated with worse overall survival
[39, 40] and is considered a risk factor for primary induc-
tion failure [41]. In addition it is associated with other gene
fusions not investigated here [42]. Hu et al. [43] reported
that PRDM16 transforming megakaryocyte-erythroid pro-
genitors into myeloid leukemia stem cells. In another study,
PRDM16 knockdown induced cell proliferation in rhabdoid
tumor cells [44], suggesting that PRDM16 may be an onco-
gene in leukemia development, although in other tumor
types PRDM16 has a controversial role [45, 46]. Thus, the
role of PRDM16 in cancer biology has been poorly studied
and remains to be fully elucidated.
A limitation of this study was the small sample size.

However, this is one of the few studies from the north-
ern region of Brazil with genomic analysis in leukemia.
This region has a large territorial extension, which
makes the diagnosis of cancer a challenge due to its fi-
nancial viability and the difficult access to geographically
isolated regions of cancer treatment centers [47].
In conclusion, this study reinforces that aCGH it is a

powerful tool for to identify regions of copy number var-
iations in childhood ALL patients and to identify new
genes associated to leukemia. Through this technique,
we identified recurrent alterations in genes DMBT1,
KIAA0125 and PRDM16; these alterations were verified
by qPCR and confirmed the possible involvement of
these genes in the development of leukemia, especially
in ALL. DMBT1 probably is also a tumor suppressor in
leukemia and is associated with standard risk and cases
with gene fusions. Although both have a paradoxical
behavior in tumorigenesis our data indicates that
KIAA0125 and PRDM16 may act as oncogene, once
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amplifications in these two genes were related to gene
fusions and leukocytosis, respectively. The combination
of two molecular cytogenetics techniques has identified
three genes that may be targets for further biological
analysis of acute lymphoblastic leukemia.
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