
CASE REPORT Open Access

Jumping translocations of chromosome 1q
occurring by a multi-stage process in an
acute myeloid leukemia progressed from
myelodysplastic syndrome with a TET2
mutation
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Abstract

Background: Jumping translocations (JTs) are rare chromosome rearrangements characterized by re-localization of
one donor chromosome to multiple recipient chromosomes. Here, we describe an acute myeloid leukemia (AML)
that progressed from myelodysplastic syndrome (MDS) in association with acquisition of 1q JTs. The sequence of
molecular and cytogenetic changes in our patient may provide a mechanistic model for the generation of JTs in
leukemia.

Case presentation: A 68-year-old man presented with pancytopenia. Bone marrow aspirate and biopsy showed a
hypercellular marrow with multilineage dysplasia, consistent with MDS, with no increase in blasts. Karyotype and
MDS fluorescence in situ hybridization (FISH) panel were normal. Repeat bone marrow aspirate and biopsy after 8
cycles of azacitidine, with persistent pancytopenia, showed no changes in morphology, and karyotype was again
normal. Myeloid mutation panel showed mutations in RUNX1, SRSF2, ASXL1, and TET2. Three years after diagnosis,
he developed AML with myelodysplasia-related changes. Karyotype was abnormal, with unbalanced 1q JTs to the
short arms of acrocentric chromosomes 14 and 21, leading to gain of 1q.

Conclusions: Our patient had MDS with pathogenic mutations of the RUNX1, SRSF2, ASXL1, and TET2 genes and
developed 1q JTs at the time of progression from MDS to AML. Our data suggest that the formation of 1q JTs
involves multiple stages and may provide a mechanistic model for the generation of JTs in leukemia.
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Background
Jumping translocations (JTs) are chromosomal re-
arrangements comprising one donor chromosome and
multiple recipient chromosomes [1]. Although JTs have
been reported in neoplasms and constitutional chro-
mosome abnormalities, they are rare chromosome re-
arrangements in neoplastic diseases. JTs are characterized
by translocations of one donor chromosome to various

recipient chromosomes, resulting in several gains of this
chromosomal segment and possible loss of segments of
the recipient chromosomes [1, 2]. Fusion of the break-off
donor chromosome segment to telomeric or interstitial
regions of recipient chromosomes can form different
chromosomal patterns of jumping translocations. Jumping
translocations involving 1q12–21 as the donor chromo-
some segment, referred to as jumping translocations of 1q
(1q JTs), are nonrandomly involved in multiple myeloma
and malignant lymphoproliferative disorders [3, 4]. 1q JTs
have been described infrequently in patients with myeloid
malignancies and have been associated with a high risk of
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transformation to acute myeloid leukemia (AML), resist-
ance to chemotherapy and poor survival rates [5, 6].
While several mechanisms have been proposed to

explain JT formation, including viral infection, chromo-
some instability, pericentromeric heterochromatin de-
condensation, shortened telomeres, and illegitimate
recombination between telomere repeat sequences and
interstitial telomeric sequences [3, 7–13], the mechan-
ism of 1q JT formation in patients with myeloid malig-
nancies is still not fully understood. Here, we describe a
patient with AML that progressed from a myelodysplas-
tic syndrome (MDS) with pathogenic mutations of the
RUNX1, SRSF2, ASXL1, and TET2 genes in association
with development of 1q JTs, which supports that the
formation of 1q JTs may involve multiple stages and
that 1q JTs may represent a very high-risk cytogenetic
abnormality with transformation to AML.

Case presentation
A 68-year-old man presented with pancytopenia. Bone
marrow aspirate and biopsy showed a hypercellular marrow
(90%) with multilineage dysplasia, consistent with MDS,
with no increase in blasts. Karyotype and MDS fluorescence
in situ hybridization (FISH) panel were normal. Repeat
bone marrow aspirate and biopsy after 8 cycles of azaciti-
dine, with persistent pancytopenia, showed no changes in
morphology, and karyotype was again normal. Myeloid
mutation panel showed mutations in RUNX1 (Glu223-
Glyfs*16), SRSF2 (Pro95His), ASXL1 (Gln976*), and TET2
(Ser890*) (TruSight myeloid sequencing panel, Illumina,
Inc.). He received several other unsuccessful therapies, with
serial bone marrow testing showing no change in morph-
ology, a normal karyotype, and no change in myeloid muta-
tions. Three years after diagnosis, his white blood cell count
increased rapidly to 36.9 K/mcL with 20% blasts (Fig. 1a).
Bone marrow biopsy (Fig. 1b) and aspirate (Fig. 1c) were
hypercellular (80%) with increased reticulin fibrosis (Grade
2–3/3) and with 53% myeloblasts by aspirate differential,
diagnostic of AML with myelodysplasia-related changes.
Karyotype was abnormal, with unbalanced 1q JTs: 46,XY,+
1,der(1;21)(p10 or q10;q10) [7]/46,XY,+ 1, der(1;14)(p10 or
q10;q10),i(18)(q10) [5]/46,XY,+ 1,del(1)(p12, 1]/46,XY [8]
(Fig. 1d). FISH analyses of prior bone marrow biopsies, in-
cluding one obtained less than a month prior to transform-
ation to AML, did not show 1q JTs. A week later, the
patient presented to the emergency department after a fall,
became obtunded, and was diagnosed with necrotizing
subdural abscess and bacteremia. He was transitioned to
comfort care and passed away the next day.

Characterization of the 1q JTs in our patient
Whole-genome single nucleotide polymorphism (SNP)
microarray showed mosaic gain of chromosomes 1p11-
1q44 and 18q11.1-18q23, arr [hg19] 1p11q44(120,365,

518_ 249,224,684)× 2–3,18q11.1q23(18, 811,960_78,014,
123)× 2–3 (Fig. 1e). The 1q JTs were demonstrated to
have a chromosome 1 centromere using a centromere 1
Satellite II/III FISH probe (Abbott/Vysis, Inc.), and to
contain ribosomal ribonucleic acid (rRNA) genes located
in nucleolar organizer regions (NORs) of short arms of
the acrocentric chromosomes using an acro-p-arm
probe (Abbott/Vysis, Inc.) (Fig. 1g, insertions 1–2). Telo-
mere FISH did not show telomere repeats in fusion sites
of the 1q JTs using telomere-specific (TTAGGG)3
probes (Applied Biosystems, Foster City, CA) (Fig. 1g,
insertion 2).

Literature review of 1q JTs in myeloid neoplasms
A literature search revealed 48 cases of myeloid neo-
plasms with 1q JTs (including our patient, Table 1)
[5, 6, 11, 14–24]. Of 40 patients who did not have
AML at the time of diagnosis, 21 (52.5%) transformed
to AML and had a poor outcome. In terms of reci-
pient chromosomes, 1q JTs in myeloid malignances
have been fused to the telomere regions of recipient
chromosomes in 81% of 149 1q JTs, and more than
half of these fused to the short arms of the five acro-
centric chromosomes in the human genome (Table 1).
In terms of recipient chromosomes, among 149 1q
JTs in 48 patients with myeloid neoplasms, 43% of
the fusions occurred in short arms of acrocentric
chromosomes, 38% occurred in telomeric regions of
chromosome arms, 11% occurred in the pericentro-
meric/centromere regions, and 8% occurred in inter-
stitial regions of recipient chromosomes (Fig. 1f). The
most frequently seen fusions are in short arms of all
five acrocentric chromosomes including 15p (12%),
14p (8.8%), 22p (8.8%), 21p (7.5%), and 13p (6.1%)
(Table 1).

Discussion and conclusions
Our patient had MDS with pathogenic mutations of the
TET2, RUNX1, SRSF2, and ASXL1 genes and developed
1q JTs at the time of progression from MDS to AML.
Our data suggest that the formation of 1q JTs may in-
volve multiple stages, including pathogenic mutations of
the TET2 gene and/or other myeloid genes, hypomethyla-
tion/decondensation of the donor pericentromeric regions
of chromosome 1, shortened/dysfunctional telomeres in
recipient chromosomes, as well as unique structure of
short arms of acrocentric chromosomes.
TET proteins, such as TET2, play key roles in the regu-

lation of DNA-methylation status [25]. The TET2 gene
(OMIM*612839) encodes a methylcytosine dioxygenase
that catalyzes the conversion of 5-methylcytosine to 5-
hydroxymethylcytosine [25]. It can both serve as a stable
epigenetic mark and participate in active demethyla-
tion [25]. Patients with myeloid malignancies and TET2
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mutations have a higher response rate with hypomethylat-
ing agents (such as azacitidine or decitabine) than patients
who are with wild-type for TET2 [26]. The pericentro-
meric heterochromatin region of chromosome 1 can
become hypomethylated by in vitro modification using 5-
Azacitidine [8]. The RUNX1 gene (OMIM*151385)
encodes a Runt-related transcription factor and binds to
deoxyribonucleic acid (DNA) via a Runt domain. It has a
primary role in the development of all hematopoietic cell
types and can produce oncogenic transformation to AML.
Recent data also suggested that RUNX1 contributes site
specificity of DNA demethylation by recruitment of TET2
and other demethylation-related enzymes to its binding
sites in hematopoietic cells [27]. The SRSF2 gene
(OMIM*600813) is a splicing factor, which is required for
spliceosome assembly. It regulates constitutive and alter-
native splicing and maintains genome stability through

the prevention of R-loop structure formation during tran-
scription [28, 29]. The ASXL1 gene (OMIM*612990) en-
codes for a chromatin-binding protein and disrupts
chromatin in localized areas which leads to enhanced
transcription of some genes, while repressing the tran-
scription of others [30]. It facilitates a chromatin poly-
comb protein to maintain both activation and silencing of
homeotic genes [31]. Through interaction with the PRC2
complex, loss of ASXL1 results in a genome-wide reduc-
tion in H3K27 trimethylation [31]. Pathogenic muta-
tions of the TET2 gene along with other genes and/or
treatment with azacitidine in our patient may have
played a role in hypomethylation/de-condensation of
pericentromeric heterochromatin of chromosome 1.
Most reported cases with 1q JTs were characterized by

banding and FISH methods with fusion breakpoints on
chromosome 1 mainly in its long arm (1q10-q12, 1q21),

Fig. 1 a Peripheral blood shows marked leukocytosis with numerous blasts and promyelocytes, dyspoietic granulocytes with nuclear
hypolobation and hypogranularity, and dyspoietic erythroid precursors. b Bone marrow core biopsy is hypercellular for age (80%).
Maturing granulopoiesis and erythropoiesis are replaced by sheets of immature cells. Megakaryocytes are decreased and have atypical
morphology. c Bone marrow aspirate consists of blasts which are intermediate in size with fine chromatin, prominent nucleoli and
scant basophilic cytoplasm. A few dyspoietic maturing granulocytes and atypical megakaryocytes are present. d Partial karyograms of a
46,XY,+ 1,der(1;21)(p10 or q10;q10) karyotype, a 46,XY,+ 1,del(1)(p12) karyotype, and 46,XY,+ 1,der(1;14)(p10 or q10;q10),i(18)(q10)
karyotype. e Whole-genome SNP microarray shows mosaic gain of chromosome 1 from 1p11 to 1qter regions and mosaic gain of
chromosome 18q. f Fusion sites of recipient chromosomes of 149 jumping translocations of 1q in 48 myeloid neoplasm patients
(including our patient). g A possible multi-stage process for the development and formation of 1q JTs in our patient.
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and rarely in its short arm (1p10-p11). Our patient had a
pericentromeric 1p11 band in the short arm of chromo-
some 1 as a breakpoint of the donor chromosome of
JTs. In terms of recipient chromosomes, the majority

of the fusions occurred in short arms of acrocentric
chromosomes (Table 1). The short arms of the five ac-
rocentric chromosomes have a unique structure, with
NORs sandwiched between centromeric and telomeric

Table 1 149 jumping translocations of 1q in 48 myeloid neoplasm patients (including our case)
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heterochromatin. Proximal (centromeric) side se-
quences of the NORs are almost entirely segmentally
duplicated, like the regions bordering centromeres. As
human NORs show enhanced instability in cancers,
pericentromeric heterochromatin of chromosome 1
may fuse with similar sequences of the proximal sides
of NORs. By FISH analyses, the JTs had a chromo-
some 1 centromere, NORs at short arms of the
recipient acrocentric chromosomes, and no telomere
repeats in fusion sites. Therefore, fusion sites of 1q
JTs in our case had NORs, but no telomere repeats
(Fig. 1g, insertion 2), which may shed light on why
43% reported 1q JTs in myeloid malignances are in the
short arms of the five acrocentric chromosomes (Fig. 1f).
Telomere length has been reported to be decreased in

AML cells with JTs [7] and telomere shortening, or dys-
functional telomeres may contribute to the formation of
1q JTs, which may explain why 38% of reported 1q JTs oc-
curred in telomeric regions of chromosome arms (Fig. 1f).
One cell in our patient had a deleted chromosome 1 with
loss of the 1p12 - 1p36.3 segment, but had telomere re-
peats on both telomere ends (Fig. 1g, insertion 1), suggest-
ing the presence of a chromosome healing event leading
to addition of a new telomere onto a chromosome break.
Our data suggest that the formation of 1q JTs involves

multiple stages (Fig. 1g). The leukemic process in our
patient was likely initiated by pathogenic mutations in
MDS/AML disease-related genes, leading to MDS.
Then mutations of myeloid genes and treatment with
a hypomethylating agent (such as azacitidine in our
patient) may lead to hypomethylation/de-condensation
of pericentromeric/centromere heterochromatin of
chromosome 1, resulting in a broken chromosome 1
with a pericentromeric/centromere break. Additionally,
telomere shortening/dysfunction increased susceptibility
to genomic/chromosome instability. Subsequently, if the
broken chromosome 1 without telomeres was not restored
by a chromosome healing event by seeding a new telo-
mere onto a chromosome break, it could be repaired by
fusing with either NOR regions of acrocentric chromo-
somes or shortened telomere ends of recipient chromo-
somes (possibly through illegitimate recombination) to
form 1q JTs in order to achieve their stabilization. The 1q
JTs in our patient occurred in the short arms of acrocen-
tric chromosomes 14 and 21, leading to gain of 1q. Finally,
1q JTs cells with extra copies of 1q with or without add-
itional chromosome abnormalities may have a prolifera-
tive advantage, leading to disease progression from MDS
to AML, clonal evolution and more aggressive disease.
Our data may provide a mechanistic model for the
generation of JTs in leukemia. Further investigation of
sequences around the fusion sites would provide the mo-
lecular key to how these events are orchestrated in
development and formation of JTs.
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