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Abstract

Background: Polyploidy, although still poorly explored, represents an important evolutionary event in several
cyprinid clades. Herein, Catlocarpio siamensis and Probarbus jullieni - representatives of the paleotetraploid tribe
Probarbini, were characterized both by conventional and molecular cytogenetic methods.

Results: Alike most other paleotetraploid cyprinids (with 2n = 100), both species studied here shared 2n = 98 but differed in
karyotypes: C. siamensis displayed 18m+ 34sm+ 46st/a; NF = 150, while P. jullieni exhibited 26m+ 14sm+ 58st/a; NF = 138.
Fluorescence in situ hybridization (FISH) with rDNA probes revealed two (5S) and eight (18S) signals in C. siamensis,
respectively, and six signals for both probes in P. jullieni. FISH with microsatellite motifs evidenced substantial genomic
divergence between both species. The almost doubled size of the chromosome pairs #1 in C. siamensis and #14
in P. jullieni compared to the rest of corresponding karyotypes indicated chromosomal fusions.

Conclusion: Based on our findings, together with likely the same reduced 2n = 98 karyotypes in the remainder
Probarbini species, we hypothesize that the karyotype 2n = 98 might represent a derived character, shared by all
members of the Probarbini clade. Besides, we also witnessed considerable changes in the amount and distribution of
certain repetitive DNA classes, suggesting complex post-polyploidization processes in this small paleotetraploid tribe.
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Background
One of the most important evolutionary characteristics
of Teleostei is a lineage-specific polyploidization (i.e.
teleost-specific whole-genome duplication = TS-WGD)
that occurred approximately 226–316 Mya [1], subse-
quently to its divergence from the remaining actinopter-
ygians (i.e. bichirs, sturgeons, paddlefishes, gars and
bowfin) [2, 3]. Furthermore, additional whole-genome
duplications (WGDs) took place independently in sev-
eral other teleostean lineages, such as, e.g., Catosto-
midae [4], Cobitidae [5], Callichthyidae [6, 7],
Salmoniformes [8] and especially Cyprinidae [9–11].

Independent evolutionary tetraploidy and even recur-
rent hexaploid events of allopolyploid origin have
already been evidenced for several cyprinid clades taxo-
nomically recognized as tribes [9]; these are Probarbini,
Torini, Smiliogastrini, Cyprinini, Spinibarbini, Schi-
zothoracini, Schizopygopsini and Barbini and overall ac-
count for more than 400 polyploid species. Probarbini
represents the most early-diverging group [9], with only
two genera: (i) the monotypic Catlocarpio (C. siamensis
Boulenger, 1898) being the largest known cyprinid spe-
cies attaining a length of up to three meters [12, 13],
and (ii) the genus Probarbus, with three valid species
[14] (P. jullieni Sauvage, 1880, P. labeamajor Roberts,
1992 and P. labeaminor Roberts, 1992). These four pota-
modromous species from large river systems in South-
east Asia have been and are heavily declining in the sizes
of populations due to fishery pressures, but also due to
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habitat loss and degradation. Thus, since extirpated
from most of their native range, these species were
considered as “threatened” following IUCN criteria
(IUCN Red List of Threatened Species 2012) [15–18].
Irrespective of the evolutionary importance of paleo-

polyploidy present in various clades of cyprinid fishes
[9], its cytogenetic investigation remains practically re-
stricted to reports about diploid chromosome numbers
(2n) and karyotype descriptions, rarely complemented
with particular chromosome banding protocols [19].
Even less studies applied molecular cytogenetic
approaches, such as e.g. the physical mapping of riboso-
mal genes in Indian species of the genus Tor, tribe Torini
[20, 21]. The 2n and the karyotypes of the species stud-
ied herein were previously reported based exclusively on
conventionally Giemsa-stained chromosomes [22, 23].
Based on those reports, two individuals of P. jullieni and
C. siamensis, obtained from aquarium fish dealer, pos-
sessed 2n = 98 chromosomes, differing in the proportion
of chromosome categories: (18m + 54sm/st + 26a) in P.

jullieni and (18m + 28sm/st + 52a) in C. siamensis. The
present study includes in depth cytogenetic analyses of these
two species, comprising conventional Giemsa-staining,
C-banding and fluorescence in situ hybridization (FISH) ap-
proaches with chromosomal mapping of several repetitive
DNA classes.

Results
Karyotypes
C. siamensis possesses 2n = 98 with the karyotype com-
posed of 18m + 34sm + 46st/a elements, with number of
chromosomal arms (NF, Nombre Fondamental) being
equal to 150. P. jullieni shares with the former species
2n = 98, but differs in karyotype composition having
26m+ 14sm + 58st/a and NF = 138. The chromosome pairs
#1 in C. siamensis and #14 in P. jullieni were almost dou-
bled in size when compared to the rest of corresponding
karyotypes. No differences between male and female
karyotypes occur in both species (Fig. 1).

Fig. 1 Collection sites of Catlocarpio siamensis and Probarbus jullieni in Thailand examined in the present study (Map of the Mekong River basin
modified from Rainboth [13])
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Chromosome mapping of 5S and 18S ribosomal DNA
(rDNA) sequences
In the genome of C. siamensis, the minor 5S rDNA class
is located on a single chromosomal pair (#27), while the
major 18S rDNA occurs in four chromosome pairs (#22,
#23, #40, #41). By contrast, in P. jullieni the 5S rDNA
genes are located on three chromosomal pairs (#23, #24,
#25), while the 18S rDNA are in another three ones (#19,
#35, #36). Consequently, no co-localization of rDNA clas-
ses in the genome of either species was detected (Fig. 1).

Chromosomal mapping of microsatellite sequences
The mapping of the three short repetitive sequences,
(A)30, (CA)15 and (GA)15, showed the same hybridization
patterns in both species. While (A)30 presented a scattered
distribution among all chromosomes, the other two motifs
(CA)15 and (GA)15 are both accumulated in the telomeric
regions of several chromosome pairs (Fig. 2).

Discussion
Despite the sporadic occurrence in higher vertebrates,
polyploidy was repeatedly documented across several
fish lineages and at different taxonomic levels, implying
its independent and recurrent origin [24–27]. Out of the
four species placed in the tribe Probarbini, just two – P.
jullieni and C. siamensis – have previously been cytoge-
netically analyzed. Suzuki and Taki [22] reported for the
former species 2n = 98 (18m + 54sm/st + 26a) and the
follow-up study from the same authors [23] showed
2n = 98 (18m + 28sm/st + 52a) for the latter species.
Our results confirmed 2n for both species but with
small differences in the karyotype composition. This
incongruence reflects probably the small size of the
cyprinid chromosomes, especially those of polyploids.

Furthermore, cyprinid chromosomes also exhibit a
gradual decrease in size, with the centromere posi-
tions ranging step-wisely from median to nearly ter-
minal. Indeed, these features make it difficult to
assess the chromosomal categories with accuracy
[28–30].
Another important aspect of the comparative cytotax-

onomy associated with Probarbini species analyzed
herein is their slightly reduced 2n = 98 from the usual
2n = 100 that occurs in the overwhelming majority of
the polyploid cyprinids [19]. Representatives of the
Schizothoracini and Schizopygopsini tribes, the most
ones phylogenetically distant from the Probarbini [9],
also display a reduced chromosome number ranging
from 90 to 98 [31–38]. In this sense, such 2n reductions
seem to be a result of independent evolutionary events. As
most of other paleotetraploid cyprinine taxa have 2n = 100,
98 chromosomes found in both species examined here
likely represent a derived feature. We suppose that the re-
duced 2n = 98 might be a shared derived character for spe-
cies of the whole Probarbini clade. Yet, 2n counts for the
two remaining members of this group, i.e. P. labeamajor
and P. labeaminor, remain yet to be determined. An obvi-
ous but still unclear question is what evolutionary back-
ground stands beyond this 2n reduction? Probarbini are
highly potamodromous fishes, while the representatives of
the other two lineages are confined to high altitudes in
Qinghai–Tibetan plateau, forming small, highly fragmen-
ted populations [39]. These lineages also contain hexaploid
forms [33] or even triploid derivative of this hexaploid level
[40] suggesting complex evolutionary processes.
Rapid changes for content in polyploid genomes repre-

sent an integral part of very complex processes leading to
both immediate and long-term post-polyploidization

Fig. 2 Karyotypes of Catlocarpio siamensis and Probarbus jullieni arranged from Giemsa-stained, C-banded chromosomes and after dual-colour
FISH with 5S (red) and 18S (green) rDNA probes. Scale bar = 5 μm
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alterations, involving restructuring of genome architec-
ture, epigenetic landscape and gene expression patterns.
These processes lead to gradual re-diploidization, i.e.
re-establishment of genome balance and diploid-like in-
heritance [41–49]. Repetitive DNA sequences may be ei-
ther lost during the process of the so-called genome
downsizing, or they can be amplified and/or accumulated
in gene-poor regions. Such changes may be driven by illegit-
imate (non-homologous) recombination and deregulated
control of (retro) transposition activity [43, 44, 47, 50–52].
Therefore, the mapping of repetitive DNA classes

might provide a useful tool for elucidating the dynamics
of (especially young) post-polyploid genomes. Alike the
comprehensive cytogenetic maps produced for plant
neopolyploids e.g. [53–55], similar research in fishes is
mainly restricted to mapping of tandemly-repeated clus-
ters of major (nucleolus-forming, 45S) and minor (5S)
rDNA classes as they are the most utilized markers in
fish cytotaxonomy in general [28, 56–59]. However,
studies performing cytogenetic mapping of e.g. several
markers such as Hox genes or satellite DNAs, in con-
junction with recent advances in genome sequencing
and bioinformatics, are also starting to be implemented
typically in non-teleost acipenserids [60, 61]. Regarding
rDNA profiles, they proved useful especially in deci-
phering the origin of rather recent homoploid or poly-
ploid hybrids, because the intermediate pattern might
help to identify the parental species [62–66]. Moreover,
if the numbers of rDNA sites remain additive in poly-
ploids of uncertain origin, the mechanism of either
auto- or allopolyploidy might be inferred [67–69].
However, both rDNA classes are subjected to dynamic
and complementary evolutionary forces leading either to
intragenomic sequence homogenization (concerted evolu-
tion), or to the emergence of new repeat variants
(birth-and-death evolution) [70–76]. In polyploids, these
processes are further modified by the nature of polyploidy,
with nucleolar dominance [71, 77, 78] and chimeric se-
quence variants (described also in cyprinids [72–75]) be-
ing a typical example found in allopolyploids. Finally,
deregulated control of (retro) transposition activity, espe-
cially in hybrid genomes, may further greatly contribute to
rDNA site number instability/ hypervariability [76], as
both rDNA classes are known to be frequent targets for
insertion of various mobile elements [79–83]. All these
processes are adding complexity to rDNA dynamics and
may disable smooth usage of these markers for examin-
ation of karyotype differentiation processes. To name a
few examples, high polymorphism and/or rapid amplifica-
tion of rDNA sites were found in homoploid or polyploid
cyprinid fishes [29, 62, 84–86] as well as in other paleo- or
neopolyploid fish taxa across the teleost phylogeny [58,
87]. However, also some diploid cyprinids might pose a
challenge in terms of rDNA site number analysis due to

varied degree of intra- or interindividual polymorphism
[88, 89] and interspecific variability [90, 91].
In this study, the number and distribution of riboso-

mal genes were not conserved among both analyzed spe-
cies. Thus, whereas two and eight 5S and 18S rDNA
signals, respectively, were mapped on the chromosomes
of C. siamensis, a total of six signals for both rDNA clas-
ses was observed in the P. jullieni karyotype (Fig. 1).
Considering only the strictly polyploid taxa, the distribu-
tion patterns of the rDNA sites among the cyprinid line-
ages remain poorly covered [29, 30], except for some
representatives of the Torini and Cyprinini tribes. The
available data for five Indian species of the genus Tor
(Torini) [21, 84, 85] demonstrate very similar pattern as
found in our present study, i.e., either single or multiple
chromosome pairs carrying both ribosomal clusters.
However, the genomes of several members of the clade
Cyprinini were examined more thoroughly for these
markers [19]; also they exhibit variable site numbers for
both rDNA classes. As an example, the common carp
Cyprinus carpio, with a (paleo) tetraploid karyotype
2n = 100, exhibits a re-diploidized pattern for 45S
rDNA, with only a single chromosome pair carrying such
sites [92, 93]. Also four to eight 5S rDNA loci [94] can be
observed there, while in the (paleo-) tetraploid crucian
carp Carassius carassius the major rDNA sites occupy
two different chromosomal pairs, and the minor rDNA
encompasses a variable number of 8–18 loci [29, 30]. Be-
sides, a comparable variability of rDNA distribution was
also present in several polyploid forms of C. auratus com-
plex [63, 67, 95]. While some reports have evidenced
co-localized sites of 5S and 45S rDNA clusters in several
either diploid or polyploid cyprinids [62, 86, 94, 96], this is
not the case for the species studied herein. Finally, the
multiple 45S rDNA sites in both Probarbini species
display only slight site-number changes, while 5S rDNA
shows a re-diploidized condition in C. siamensis - accom-
panied, however, by apparently larger sizes of both hom-
ologous loci. Complementary analyses in the remaining
Probarbini species, P. labeamajor and P. labeaminor, will
complete the picture of the post-polyploid rDNA dynam-
ics in this clade. However, from the current data, probable
mechanisms such as unequal crossing overs, illegitimate
recombination and also transpositions might account for
the observed patterns, possibly facilitated by the allopoly-
ploid/hybrid origin of the species.
Microsatellites or simple sequence repeats (SSRs) are ol-

igonucleotides of 1–6 base pairs in length, forming exces-
sive tandem repeats of usually four-to-40 units [97–99].
They show abundant distribution throughout eukaryotic
genomes, being dispersed or clustered both in euchroma-
tin or heterochromatin. They are highly polymorphic re-
garding copy number variations [98]. In the fish genomes,
microsatellites are usually abundant in the centromeric
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and telomeric regions, and they can also localize preferen-
tially to sex chromosomes [56, 100, 101]. In our study,
both species exhibited the same general hybridization pat-
tern for all applied probes, with the motif (A)30 showing
moderate abundance and dispersed hybridization pattern
throughout the genomes. Otherwise, the dinucleotides
(CA)15 and (GA)15 accumulated exclusively in telomeric
and subtelomeric chromosomal regions, corroborating
findings from other fish groups studied to date [101–107].
While the bearing of the observed patterns to the dynam-
ics of polyploidy remains unclear, some authors [104, 107]
suggested that the preferential targeting of (CA)15 and
(GA)15 and other microsatellite motifs to telomeric and
subtelomeric regions might be functionally linked with the
structural formation of telomeres. As microsatellites can
be found to be embedded within rDNA clusters [108] and
all rDNA sites turned out to be terminal in both species
under study, we suppose that (CA)15 and (GA)15 dinucleo-
tides might have contributed to the dynamic behavior of
rDNA sites in these Probarbini representatives.

Methods
Animals
Individuals of Catlocarpio siamensis (12♂ and 6♀)
and Probarbus jullieni (8♂ and 8♀) from different
tributaries of the Mekong River basin (Thailand) were
analyzed (Fig. 3). The specimens were caught using a
hand-net, placed in sealed plastic bags containing oxygen
and clean water, and transported to the laboratory. Ex-
periments were performed in accordance with ethical
protocols, and anesthesia-using clove oil was adminis-
tered prior to sacrificing the animals, as approved by
the Ethics Committee of Khon Kaen University and by
the RGJ committee under no. PHD/K0081/2556 (Thailand).

The specimens were deposited in the fish collection
of the Cytogenetic Laboratory, Department of Biology
Faculty of Science, Khon Kaen University (Thailand).

Chromosome preparation and C-banding
Mitotic chromosomes were obtained from the anterior
kidney, cell suspensions dropped onto microscopic slides
and air-dried [109]. Conventional staining was done by
5% Giemsa solution in phosphate buffer (pH 6.8) for 10 min.
The distribution of constitutive heterochromatin on chromo-
somes was demonstrated by C-banding method [110].

The probe preparation and FISH experiments
Two tandemly arrayed rDNA sequences, namely 5S and
18S, were obtained via PCR from the nuclear DNA of C.
siamensis. The 5S repeat copy encompassing 120 base pairs
(bp) of the 5S rRNA coding region and 200 bp of the
non-transcribed spacer (NTS) was produced according to
Pendas et al. [111]. The 18S rDNA fragment, with
1,400-bp in length including the 18S rRNA gene coding se-
quence, was prepared according to Cioffi et al. [112]. Both
rDNA fragments were cloned into plasmid vectors and
propagated in DH5α Escherichia coli competent cells (Invi-
trogen, San Diego, CA, USA). The final 5S and 18S rDNA
probes were directly labeled with SpectrumOrange-dUTP
and SpectrumGreen-dUTP, respectively, by Nick transla-
tion kit (Roche, Mannheim, Germany) according to the
manufacturer’s recommendations. FISH was performed
under high stringency conditions following the protocol of
Yano et al. [113].
FISH with the set of probes corresponding to three

microsatellite motifs (A)30, (CA)15 and (GA)15 was per-
formed as described in [114], with slight modifications.

Fig. 3 Metaphase plates of Catlocarpio siamensis and Probarbus jullieni after FISH with different microsatellite motifs. Scale bar = 5 μm

Saenjundaeng et al. Molecular Cytogenetics  (2018) 11:51 Page 5 of 9



These sequences were directly labeled by Cy3 at the 5′
terminus during synthesis (Sigma, St. Louis, MO, USA).
Chromosomes were counterstained with DAPI (1.2 μg/ml)

and mounted in antifading solution (Vector, Burlingame,
CA, USA,) in both experiments.

Image processing
At least 30 metaphase spreads per individual were ana-
lyzed to confirm the diploid number, karyotype structure
and FISH data. Images were captured using an Olympus
BX50 microscope (Olympus Corporation, Ishikawa, Japan)
with CoolSNAP and processed using Image Pro Plus 4.1
software (Media Cybernetics, Silver Spring, MD, USA).
Chromosomes were classified according to centromere
position as metacentric (m), submetacentric (sm) and sub-
telocentric (st)/acrocentric (a) ones [115], with the st and
a chromosome pairs being scored together in one st-a
category. For the chromosomal arm number (NF; Nombre
Fondamental) to be calculated, m + sm were scored as
bi-armed while st + as mono-armed.

Conclusions
Here we hypothesized that the karyotype characterized by
2n = 98 in both analyzed species might represent a derived
character, probably also shared by all members of the Probar-
bini clade. Besides, we also witnessed considerable changes
in the amount and distribution of certain repetitive DNA
classes, hence suggesting complex post-polyploidization pro-
cesses in this small paleotetraploid tribe.
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