
RESEARCH Open Access

Submicroscopic chromosomal imbalances
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Abstract

Background: Chromosomal abnormalities are one of the genetic mechanisms associated with abortion. However,
the roles of submicroscopic chromosomal imbalances in early abortion are still unclear. This study aims to find out
whether submicroscopic chromosomal imbalances contribute to early abortion.

Methods: A total of 78 chorionic villus specimens from early spontaneous abortion patients with no obvious
abnormality are collected after miccroassay analysis (the case group). At the same time, 60 chorionic villus
specimens from induced abortion patients with no obvious abnormality are selected as the control group. The
submicroscopic structures of chromosomes from two groups are analyzed using an array-based comparative
genomic hybridization (aCGH).

Results: In the case group, 15 specimens show submicroscopic chromosomal abnormalities including 14 micro-
deletion/micro-duplication in chromosomes 2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 18, and 22, and 1 uniparental disomy (UPD)
in chromosome 19. Moreover, no pathogenic copy number variations are found in the control group. The results
between these two groups exhibit significantly statistical difference.

Conclusion: Submicroscopic chromosomal imbalances may be one of the main reasons for early abortion.
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Background
Spontaneous abortion, also known as miscarriage, means
the loss of a pregnancy before 20 weeks and the weight
of fetal less than 1000 g, which is the natural death of an
embryo before it can survive independently [1]. Risk fac-
tors for miscarriage include an older parent, previous
miscarriage, drug or alcohol use, diabetes, exposure to
tobacco smoke, and obesity, and so on [2]. Early
abortion that occurs in the first 12 weeks of pregnancy,
constitutes about 80% of miscarriages [3]. A large pro-
portion of early abortion cases is caused by chromo-
somal abnormalities. Among them, half of embryonic
miscarriages have an aneuploidy, namely aberrant num-
ber of chromosomes [4].
About 6–13% stillbirth is related to karyotypic alter-

ations [5–7]. Karyotype analysis is reported to detect

numerical abnormalities of chromosomes like triploid,
haploid and polyploidy and structural abnormality like
translocation and inversion. Therefore, the technique of
G-binding karyotype analysis is usually used to diagnose
the karyotype abnormality of tissues in the dead fetus
[8]. However, due to weak cell viability of died fetus and
difficult culture of cells, only 45–65% of cells can be ob-
tained for the diagnosis of cytogenetics [9]. Recent re-
searches have found that submicroscopic structure copy
number variations (CNVs) is the genetic etiology of fetal
growth retardation, miscarriage, stillbirth and other con-
genital diseases, which can be detected by the technique
of chromosomal microarray analysis (CMA) [10, 11].
CMA, also called molecular karyotyping analysis, in-

cludes array-based comparative genomic hybridization
(aCGH), and single nucleotide polymorphism (SNP) array
[12, 13]. By far, CMA has been used in the research and
diagnosis of tumors [14], neurologic and mental diseases
[15–17], and congenital diseases [18, 19], etc. However,
there are few reports about CMA analysis in miscarriage
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and stillbirth. In the present study, in order to determine
whether submicroscopic chromosomal imbalances are the
main reasons for early abortion CMA is used to analyze
and compare the submicroscopic structures of chromo-
somes in chorionic villus specimens from both the early
spontaneous abortion group and the induced abortion
group.

Methods
Patients
A total of 78 chorionic villus specimens from early spon-
taneous abortion patients with no obvious abnormality
(the case group) and 60 chorionic villus specimens from
induced abortion patients with no obvious abnormality
(the control group) were collected by the Center for
Reproduction and Genetics (The affiliated Suzhou Hos-
pital of Nanjing Medical University, Suzhou, Jiangsu,
China) after karyotype analysis. All experiments were
carried out with the approval of the Institutional Ethics
Commission.

Array-CGH
The 8*60 k aCGH analysis (Agilent Technologies, Santa
Clara, CA, custom-designed) was performed according
to the manufacturer’s protocols (version 4.0, Agilent
Technologies, CA, USA). Briefly, 0.5 μg of genome DNA

(gDNA) was digested with an enzyme mixed with 2.5 U
Alu I and 2.5 U Rsa I (SureTag DNA Labeling Kit, Agi-
lent Technologies, CA, USA) at 37 °C for 2 h. gDNA
was labeled with Cy3 and Cy5 (test and control, respect-
ively), and further purified with SureTag DNA Labeling
Kit (Agilent Technologies, CA, USA) following the in-
structions provided by the company. The 60 K whole
genome aCGH chip containing one oligoprobe/8 kb
(Agilent Technologies) was hybridized with labeled
DNA at 65 °C for 24 h.

Image and data analysis
The hybridized chip was scanned, and images were
quantified with FEATURE EXTRACTION software
(Agilent Technologies). Data were normalized using a
vendor-provided equation (log2 [Cy3/Cy5] 0.25). CNVs
selection was conducted in Agilent CytoGenomics (Agi-
lent Technologies), followed by a filter to select regions
with three or more adjacent probes and a minimum
average log2 ratio + 0.25.

Result
The results of aCGH show deletion as well as duplication
in different genomic regions affected early spontaneous
abortion. In the case group, 15 specimens with
chromosomal abnormalities including 14 micro-deletion/

Table 1 The results of aCGH in 15 patients

Patients The results of aCGH Number of CNVs

1 Chr16: (76,320,001–90,160,000) X3,13.84 M, 16q terminal duplication
syndrome; Chr18: (56,020,001–78,020,000) × 1, 22 M, 18q deletion
syndrome.

2 (35.84)

2 Chr 6p25.3-p22.3 (347,038–17,543,199) x1, 17.20 M deletion syndrom. 1 (17.20)

3 Chr 19 uniparental disomy.

4 Chr22: (18,900,001–21,420,000) X1, 2.52 M, 22q11 deletion syndrome
(Velocardiofacial/DiGeorge syndrome).

1 (2.52)

5 Chr22: (18,880,001–21,460,000) X1, 2.58 M, 22q11 deletion syndrome
(Velocardiofacial / DiGeorge syndrome).

1 (2.58)

6 Chr22: (35,420,001–39,100,000)X1, 3.68 M, Waardenburg syndrome. 1 (3.68)

7 Chr22: (18,880,001–21,820,000) X1, 2.94 M, 22q11 deletion syndrome
(Velocardiofacial / DiGeorge syndrome).

1 (2.94)

8 Chr9: (130,900,001–133,080,000) X1, 2.18 M. 1 (2.18)

9 Chr7: (64,680,001–65,200,000) X1, 520 K, deletion syndrome; Chr12:
160,001–34,820,000) X3, 34.66 M, 12p duplication syndrome.

2 (35.18)

10 Chr16: (76,320,001–90,160,000) X3, 13.84 M, 16q terminal duplication
syndrome; Chr18: (56,020,001–78,020,000) X1, 22 M, 18q deletion
syndrome.

2 (35.84)

11 Chr15: (22,740,001–29,120,000) X1, 6.38 M, Prader-Willi syndrome,
Angelman syndrome.

1 (6.38)

12 Chr18: (66,540,001–68,040,000) X3, 1.5 M, duplication, pathogenicity
unknown; Chr18: (68,760,001–77,400,000) X3, 8.64 M, 18q terminal
duplication syndrome.

2 (10.14)
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micro-duplication and 1 uniparental disomy for chromo-
some 19 are found among 78 specimens (Table 1). The
length of abnormality of 15 specimens ranges from 380 kb
to 82.08 mb. The aberrations are unequally distributed
among the 15 patients, for example, patient 14 has 4
aberrations. Furthermore, the number of CNVs in pa-
tients 14 and 15 are higher than that of other pa-
tients (Table 1). The CNV plots of one patient are
shown in Additional file 1: Figure S1 as a representa-
tive. Conversely, no pathogenic CVNs are found in
the control group.

Those chromosomal aberrations are not equally distrib-
uted in all chromosomes. The submicroscopic chromosomal
abnormalities occur in chromosome 2, 4, 5, 6, 7, 8, 9, 12, 15,
16, 18, and 22 (Table 2). Among them, the submicroscopic
chromosomal abnormalities of chromosome 4, 8, 9, 18, and
22 have ever been reported by others. A total of 9
amplification events and 14 deletion events are
invovled in 15 patients. Twenty-one pathogenic CNVs
including Waardenburg syndrome, Velocardiofacial/
DiGeorge syndrome, Prader-Willi syndrome, Angelman
syndrome, and Cornelia de Lange syndrome are found.

Table 2 The results of aCGH per chromosome

Chromosome Patients The results of aCGH References Number of CNVs

2 14, 15 14: chr2, 24.02 M 2p partial trisomy syndrome pathogenicity
unknown; 15: chr2, 82.08 M 2q terminal duplication syndrome.

– 2

4 15 Chr4, 6.92 M 4q terminal deletion syndrome. [27] 1

5 14 Chr5, 380 K deletion, pathogenicity unknown. – 1

6 2 Arr6, 17.20 M deletion syndrome. – 1

7 9 Chr7, 520 K deletion syndrome. – 1

8 14 Chr8, 7.94 M deletion syndrome, Cornelia de Lange syndrome;
Chr8, 12.12 M duplication, pathogenicity unknown.

[28] 1

9 8 Chr9, 2.18 M, deletion syndrome. [29] 1

12 9 Chr12, 34.66 M 12p duplication syndrome. – 1

15 11 Chr15, 6.38 M, deletion syndrome, Prader-Willi syndrome,
Angelman syndrome.

– 1

16 1, 10, 13 1: chr16, 13.84 M terminal duplication syndrome; 10: chr16,
13.84 M 16q terminal duplication syndrome; 13: chr16, 13.9
M 16q terminal duplication syndrome.

– 3

18 1, 10, 12, 13 1: chr18, 22 M deletion syndrome; 10: chr18, 22 M 18q
deletion syndrome; 12: chr18, 1.5 M 18q terminal duplication,
pathogenicity unknown; chr18, 8.64 M 18q terminal duplication
syndrome;
13: chr18,21.94 M 18q deletion syndrome.

[30] 4

19 3 Chr 19 uniparental disomy. – 1

22 4, 5, 6, 7 4: chr22, 2.52 M 22q11 deletion syndrome (Velocardiofacial/
DiGeorge syndrome); 5: chr22, 2.58 M 22q11 deletion syndrome
(Velocardiofacial/DiGeorge syndrome); 6: chr22, 3.68 M deletion
syndrome Waardenburg syndrome; 7: chr22, 2.94 M 22q11
deletion syndrome (Velocardiofacial /
DiGeorge syndrome).

[31] 4

“-” means no investigation by others

Table 1 The results of aCGH in 15 patients (Continued)

Patients The results of aCGH Number of CNVs

13 Chr16: (76,260,001–90,160,000) X3, 13.9 M, 16q terminal duplication
syndrome; Chr18: (56,080,001–78,020,000) X1, 21.94 M, 18q deletion
syndrome.

2 (35.84)

14 Chr2: (1–24,020,000) X3, 24.02 M, 2p partial trisomy syndrome; Chr5:
(19,080,001–19,460,000) X1, 380 K, deletion, pathogenicity unknown;
Chr8: (160,001–8,100,000) X1, 7, 94 M, deletion syndrome Cornelia
de Lange syndrome; Chr8: (12,540,001–24,660,000) X3, 12.12 M,
duplication; pathogenicity unknown.

4 (44.46)

15 Chr2: (160,940,001–243,020,000) X3, 82.08 M, 2q terminal duplication
syndrome; Chr4: (184,020,001–190,940,000) X1, 6.92 M, 4q terminal
deletion syndrome.

2 (89)
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22q11 (18900001–21,420,000) occurs 2.52 M deletion syn-
drome, which leads to Velocardiofacial/DiGeorge syn-
drome. Besides, the pathogenicity of two CNVs on
chromosomes 5 and 8 are still unknown. Amplifications
frequently are identified in chromosomes 2, 16, 18
(77.78%), and chromosomal deletions are more frequent
in chromosomes 18 and 22 (50.00%). The total frequency
of submicroscopic chromosomal abnormalities appearing
in chromosomes 2, 16, 18, and 22 is 60.87% (Table 3).

Discussion
To elucidate the possible genetic reasons underlying the
spontaneous abortion, we investigated chorionic villus
specimens from early spontaneous abortion with no ob-
vious abnormality using aCGH. Previously, the tech-
nique of G-binding karyotype analysis is regarded as the
“Gold rule” of diagnosis of the chromosome abnormal-
ity, which can be used to test a set of chromosome num-
ber and obvious textural anomaly. However, this method
has multiple limitations such as the failure of cell cul-
ture, time-consuming cell culture, microorganism pollu-
tion and the selective growth of maternal decidual cells.
Besides, it has low resolution, hardly detects CNVs less
than 5 Mb, and difficultly makes sure the size and break-
ing point of CNVs [20–24]. Other techniques, like fluor-
escence in situ hybridization (FISH) and CGH, are rarely
applied due to their limitations. In contrast, CMA has
the advantages including no need to culture cells, high
throughput, high resolution and high accuracy, and it
can scan the chromosomal non-equilibrium variations
within the whole genome and detect CNVs at the sub-
microscopic structure level through one time hybrid ex-
periment [25, 26]. Further, CMA improves diagnosis of
chromosomal diseases at the genetic level avoiding the
limitation of karyotype, FISH and CGH analysis

techniques. aCGH analysis technology is mainly used in
the diagnosis and research in cancers and genetic dis-
eases [20, 21, 27, 28], but less in abortion. In this study,
aCGH method is successfully used to determine sub-
microscopic chromosomal abnormalities in early spon-
taneous abortion patients.
Previous studies indicated that the submicroscopic

chromosomal abnormalities is one of the major genetic
causes of abortion and stillbirth [14, 25, 26]. Especially,
stillbirth karyotypes are found at different trimesters. In
78 uncultured amniotic fluid specimens during second
trimester, chromosomal abnormality is found using
probes located at chromosome 13, 18, 21, X, Y. by FISH
method [29]. Du et al. reported that absent fetal nasal
bone and a higher rate of abnormal karyotype are in-
cluded in the second trimester of pregnant women [30].
Microarray analysis is used to identiy stillbirths and pro-
vids a relative increase in the diagnosis of genetic abnor-
malities of compared to karyotype analysis [31]. Sahoo et
al. [32] used a whole-genome SNP-based array (81.6%)
and aCGH to determine the abnormalities in both fresh
and formalin-fixed paraffin-embedded (FFPE) samples of
products of conception (POCs) [33]. In this study, 15
submicroscopic chromosomal abnormalities are ob-
served in early spontaneous abortion with using chori-
onic villus samples by aCGH method. Furthermore,
micro-deletion/micro-duplication is observed in chro-
mosomes 2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 18, and 22, and
uniparental disomy is found in chromosome 19. In
addition, a total of 21 pathogenic CNVs including Waar-
denburg syndrome, Velocardiofacial/DiGeorge syn-
drome, Prader-Willi syndrome, Angelman syndrome,
and Cornelia de Lange syndrome identified in this study
are also reported in published articles [32, 34–37]. For
instance, SPTAN1 gene deletion in chromosome

Table 3 Number and frequency of aberrations per chromosome

Chromosome Duplication(Patients) Frequency (%) Deletions (Patients) Frequency (%) Total Frequency(%)

2 14,15 22.22 – 8.70

4 – 15 7.14 4.35

5 – 14 7.14 4.35

6 – 2 4.35

7 – 9 7.14 4.35

8 14 11.11 14 7.14 8.70

9 – 8 7.14 4.35

12 9 11.11 – 4.35

15 – 11 7.14 4.35

16 1,10,13 33.33 – 13.04

18 12,12 22.22 1,10,13 21.43 21.74

19 – –

22 – 4,5,6,7 28.57 17.40

“-” means no amplification or deletion
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9:(130900001–133,080,000) has been reported to be
associated with early infantile epileptic encephalopathy,
infantile spasms, intellectual disability, and hypomyelina-
tion, and molecular defects of TOR1A gene lead to
early-onset primary dystonia [31]. Besides, two novel
CNVs on chromosomes 5 and 8 [chr5: (19080001–
19,460,000) × 1, 380 K; chr8: (12540001–24,660,000) X3,
12.12 M] provide more possible causative CNVs in the
development of abortion. Additionally, the spontaneous
abortion alterations target certain chromosomes more
than others. The CNVs of chromosomes 2, 16, 18, and
22 account for more than half of the cases (60.87%) in
the present study.

Conclusion
In sumarry, the aCGH analysis of 78 chorionic villus
specimens shows that submicroscopic chromosomal im-
balances might be one of the main reasons for early
abortion. The chromosomal regions identified in this
study may be critical in the development of abortion,
and provides a basis for better understanding of the gen-
etic cause of abortion. However, Further investigations
are needed to including exploring the possible causative
CNVs and genes including more samples and more
comprehensive clinical information of the patients.

Additional file

Additional file 1: Figure S1. The CNV plots of one patient are shown in
Figure S1 as a representative. (TIF 396 kb)
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