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Abstract

Background: Translocations of the IGH locus on 14q32.3 are present in about 8% of patients with chronic lymphocytic
leukemia (CLL) and contribute to leukemogenesis by deregulating the expression of the IGH-partner genes. Identification
of these genes and investigation of the downstream effects of their deregulation can reveal disease-causing mechanisms.

Case presentation: We report on the molecular characterization of a novel t(12;14)(q23.2;q32.3) in CLL. As a
consequence of the rearrangement ASCL1 was brought into proximity of the IGHJ-Cμ enhancer and was highly
overexpressed in the aberrant B-cells of the patient, as shown by qPCR and immunohistochemistry. ASCL1
encodes for a transcription factor acting as a master regulator of neurogenesis, is overexpressed in neuroendocrine
tumors and a promising therapeutic target in small cell lung cancer (SCLC). Its overexpression has also been recently
reported in acute adult T-cell leukemia/lymphoma.
To examine possible downstream effects of the ASCL1 upregulation in CLL, we compared the gene expression of
sorted CD5+ cells of the translocation patient to that of CD19+ B-cells from seven healthy donors and detected 176
significantly deregulated genes (Fold Change ≥2, FDR p ≤ 0.01). Deregulation of 55 genes in our gene set was
concordant with at least two studies comparing gene expression of normal and CLL B-lymphocytes. INSM1, a
well-established ASCL1 target in the nervous system and SCLC, was the gene with the strongest upregulation
(Fold Change = 209.4, FDR p = 1.37E-4).
INSM1 encodes for a transcriptional repressor with extranuclear functions, implicated in neuroendocrine differentiation
and overexpressed in the majority of neuroendocrine tumors. It was previously shown to be induced in CLL cells but
not in normal B-cells upon treatment with IL-4 and to be overexpressed in CLL cells with unmutated versus mutated
IGHV genes. Its role in CLL is still unexplored.

Conclusion: We identified ASCL1 as a novel IGH-partner gene in CLL. The neural transcription factor was strongly
overexpressed in the patient’s CLL cells. Microarray gene expression analysis revealed the strong upregulation of INSM1,
a prominent ASCL1 target, which was previously shown to be induced in CLL cells upon IL-4 treatment. We propose
further investigation of the expression and potential role of INSM1 in CLL.
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Background
Chronic lymphocytic leukemia (CLL) is characterized by
the accumulation of small clonal mature B-lymphocytes
in blood, bone marrow (BM) and lymphatic tissues [1].
CLL cells present with a distinctive immunophenotype
defined by the co-expression of CD5, CD19 and CD23.
The levels of surface immunoglobulin, CD79b and CD20
are low compared to normal B-lymphocytes [2]. The
clinical course of CLL is heterogeneous, ranging from
long-term survival without the need of treatment to
rapid progression despite early and aggressive therapy.
Recurrent cytogenetic lesions are found in more than

80% of the CLL patients and have a prognostic value.
Deletions are mostly found at 13q, followed by 11q, 17p
and 6q, while trisomy 12 is the most common numerical
aberration [3, 4]. Although translocations occur in about
32–34% of the CLL cases, recurrent chromosomal trans-
locations are rare events, found in about 5% of the
patients [5, 6]. Most translocation breakpoints cluster on
13q14 followed by the IGH locus on 14q32.3 [4, 5]. A re-
cent review of 18 studies estimated the overall frequency
of IGH rearrangements in CLL to be about 8%, with re-
ported frequencies varying between 2 and 26% [7].
IGH rearrangements can occur during IGH locus re-

modeling as a result of VDJ recombination, somatic
hypermutation or class switch recombination. All these
procedures take place in the course of B-cell development
and involve the generation and re-ligation of double strand
breaks [8]. IGH locus breakpoints cluster in the joining
(IGHJ) and switch regions (IGHS) [9], although breakpoints
in the variable (IGHV) and diversity (IGHD) regions have
also been described [10]. In most instances, the biological
consequence of the rearrangement is the deregulation of
the partner gene, due to its juxtaposition to one of the IGH
enhancers, reviewed by Willis and Dyer [11]. Except of the
t(14;18)(q32;q21), immunoglobulin gene translocations are
associated with a poor prognosis in CLL [7].
Here we report on the molecular characterization of a

novel t(12;14)(q23.2;q32.3) in a patient with CLL. A search
in the Mitelman Database of Chromosome Aberrations
and gene fusions in cancer [12] for translocations involv-
ing the 12q23 region in CLL patients revealed three fur-
ther cases reported in the literature [6, 13, 14]. Molecular
characterization was performed in only one of these cases
and revealed a fusion of the CHST11 gene on 12q23.3 to
the IGH locus [13].

Case presentation
Our patient was a 58-year old female, diagnosed with CLL
in 2002. Abnormal lymphocytes showed expression of
CD5, CD19, CD20, CD22, CD23 and immunoglobulin
kappa light chain by flow cytometry. Ubiquitous enlarged
lymph nodes were detected. The patient was asymptomatic.
First line treatment was required 2003 due to increasing

leukocytosis and lymphocytosis accompanied by advancing
anemia and thrombocytopenia. The patient was treated
with chlorambucil and prednisone (Knospe protocol)
according to local standards and therapeutic possibil-
ities at that time. After achieving a partial remission
persisting approximately one year, the patient was
retreated with continuous chlorambucil for one month
but showed no response. Four cycles of oral fludarabine
were administered achieving a partial remission for four
years. The following two relapses of the disease were
treated again with fludarabine, of which the latter course
was mainly due to patient’s preference. After documenting
resistance to fludarabine the patient agreed to administra-
tion of five cycles rituximab in combination with benda-
mustine. A partial remission could be achieved. Rituximab
and bendamustine were used for treating the following
relapse 1.5 years later, achieving a partial remission for an-
other eight months. Afterwards the patient received ibru-
tinib within a clinical trial, but showed progression of
disease after only four months of treatment. Massive pro-
gression of lymphadenopathy was apparent at that time.
Therefore, a lymph node biopsy was done showing a
diffuse infiltration with small lymphocytic cells partially
resembling centroblasts or immunoblasts, though trans-
formation to an aggressive lymphoma could not be demon-
strated. According to the clinical behavior of the disease,
rituximab plus CHOP were administered but progression
occurred after three cycles of treatment. Alemtuzumab was
then administered achieving stabilization of the disease
for another year. Ultimately, the patient was treated
with lenalidomide but showed no significant response
and died 2014 due to pneumonia. Informed consent for
studies performed and for publication of the results
was obtained from the patient. All methods used are
described in detail in Additional file 1.
Patient material was first sent to our laboratory eight

years after the initial diagnosis of CLL. In the next four
years, karyotyping and FISH studies were performed
seven times in intervals of six to twelve months. The
detailed cytogenetic findings in the seven samples of the
patient, analyzed between 2010 and 2014, are summa-
rized in Table 1. Consistent findings in all patient probes
included the t(12;14)(q23.2;q32.3), a partial trisomy 12
due to duplication of der(12) chromosome (Fig. 1a) and a
submicroscopic deletion of the 13q14 region. Signal split-
ting of the Cytocell IGH Breakapart probe confirmed the
involvement of the IGH locus on chromosome 14 in the
translocation (Fig. 1b). The duplication of der(12) indi-
cates that the t(12;14)(q23.2;q32.3) preceded trisomy
12. Since trisomy 12 is considered to be an early driver
clonal event in CLL [15], we propose that the transloca-
tion occurred early in CLL evolution. Nevertheless, it is
not possible to experimentally confirm that, since no
sample was available at the time of diagnosis.
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Sequencing of LDI-PCR-generated IGHJ bands varying
from the expected germline bands revealed a productive
VDJ recombination with an unmutated V1–69 gene (100%
sequence homology) fused to D3–3 and J5 sequences and a
D-J recombination between D2–21 and J5 on the other
allele. Sequencing of the aberrant IGHS bands revealed
sequences from chromosome 12 integrated into the Switch
μ (Sμ) region. A second round of sequencing with a reverse
primer from chromosome 14 (IGH der12 Rv) was neces-
sary to read over the breakpoint on der(12), which was
located 86.5 kbp downstream of the achaete-scute family
bHLH transcription factor 1 (ASCL1) gene. Primer se-
quences are listed in (Additional file 2: Table S1). The
IGHJ-Cμ enhancer was translocated in the proximity of
ASCL1, while the more distal gene C12orf42 was translo-
cated to der(14). The breakpoint on der(14) was localized
within the pentameric repeat region of Sμ. There were no
deletions or insertions of sequences at the breakpoints of
both chromosomes (Fig. 2).

The expression of ASCL1 in the BM of the patient bear-
ing the translocation (90% infiltration) was compared to
that in normal and CLL BM samples (mean infiltration
>70%). CLL samples were subdivided in four groups ac-
cording to their cytogenetic findings (Table 2). ASCL1 was
highly overexpressed in the sample of the patient bearing
the translocation as opposed to all other groups with aver-
age fold change (FC) values greater than 5600 in all samples
(ANOVA p-value = 5.12E-10) (Fig. 3a). Immunohistochem-
istry with a monoclonal anti-ASCL1 antibody on peripheral
blood cytospins of the patient and two CLL control samples
confirmed the ASCL1 overexpression at the protein level
(Fig. 3b and c).
ASCL1, also known as hASH1 or mASH1, is the human

homolog of the Drosophila achaete-scute complex. It en-
codes for a basic pioneer helix-loop-helix transcription
factor (TF), which is a master regulator of vertebrate
neurogenesis [16]. In order to further explore the pos-
sible downstream effects of the ASCL1 upregulation in

Fig. 1 a Karyotype of the patient displaying the t(12;14)(q23.2;q32.3). Arrows mark the translocation breakpoint regions on the derivative
chromosomes. Note that der(12) is duplicated, leading to a partial trisomy 12. b Karyotype evolution (about three years later). Additional
aberrations include a del(3)(p21), monosomy 13 and add(17)(p11). For detailed information see also Table 1. c FISH with the Cytocell IGH
Breakapart probe on metaphase and interphase nuclei. The normal chromosome 14 generates a red-green fusion fluorescence signal. Der(14)
yields only a red fluorescence signal with the distal green-labeled probe being translocated on der(12). A second green fluorescence signal is
present due to the der(12) duplication. On the upper right side, a normal interphase with two red-green fusion signals is shown, next to an interphase
bearing the translocation (lower right). A white arrow marks the fusion signal from the normal chromosome 14

Malli et al. Molecular Cytogenetics  (2018) 11:3 Page 4 of 9



a

b

c

d

Fig. 2 Translocation breakpoints and derivative chromosome composition. Horizontal gray arrows indicate the transcriptional direction of the
depicted genes. Vertical black arrows indicate breakpoints (BP). a Breakpoint region on chromosome 12. The breakpoint took place 86.5 kb distal
of the ASCL1 gene. b The IGH locus on chromosome 14. The breakpoint took place within the pentameric repeat region of Switch μ. Dots indicate the
IGH enhancer elements. c Composition of der(12) and sequence around the breakpoint. The enhancer element is part of the translocated IGH
sequence and is juxtaposed to ASCL1. d der(14) and breakpoint sequence. The C12orf42 gene is translocated to chromosome 14

Table 2 CLL patient samples used for ASCL1 quantification by qPCR

Normal cytogenetics Monoallelic Del(13q) Biallelic Del(13q) Trisomy 12

Sample number 7 8 6 9

IGHV hypermutated/unmutated 3/4 4/4 3/3 6/3

Mean aberrant cells in BM 81% 88% 88% 72%

Distribution according to cytogenetic findings, IGHV mutation status and mean bone marrow (BM) infiltration

Malli et al. Molecular Cytogenetics  (2018) 11:3 Page 5 of 9



the aberrant B-cells of the patient, we compared the
gene expression of these cells to that of sorted B-cells
from seven healthy donors, using the GeneChip® Prime-
View™ Human Gene Expression Array (Affymetrix,
Santa Clara, CA). We found 176 significantly deregu-
lated genes (FC ≥ 2, FDR p ≤ 0.01) (Additional file 3:
Figure S1) and (Additional file 4: Table S2). Deregula-
tion of 55 genes in our gene set was concordant with at
least two CLL expression studies comparing CLL cells
to peripheral CD19+ B-lymphocytes of healthy individ-
uals (see also Additional file 4) [17–20].

We then focused on the genes with the strongest deregu-
lation in our gene set (FC ≥ 10, FDR p ≤ 0.001) (Table 3).
Seven of the top 18 deregulated genes (ABCA9, KCNJ11,
FHDC1, KSR2, EBF1 and RGS2) were part of the above-
mentioned CLL gene expression signature. The deregula-
tion of three further genes from this list (RGS1, APP,
GABRB2 and FGF2) was concordant with CLL versus nor-
mal comparisons from the Oncomine Database [21–24].
Among the residual eight highly deregulated genes the
overexpression of ASCL1 and also PAH, localized 40 kbp
proximal to the ASCL1 locus, could be explained by their

Fig. 3 Validation of the ASCL1 overexpression. a Comparison of the BM expression of ASCL1 between the CLL patient with the t(12;14)
translocation and healthy controls as well as CLL with normal karyotype, mono- and biallelic del(13) and trisomy 12 respectively. Results are
displayed as log2 fold change. HB2M was used as housekeeping control. Comparisons of the ASCL1 expression in the patient versus all other
groups were highly significant (ANOVA p-value = 5.12E-10). Comparisons between normal BM and all other groups were not significant. b
Immunohistochemistry for ASCL1 on a peripheral blood cytospin of the patient bearing the t(12;14). Note the strong nuclear reaction in the
center. In contrast to that a sample from a B-CLL control (c) showed no antibody reaction. Nuclei are counterstained with hematoxylin

Table 3 Highly deregulated genes in the CLL cells of the translocation patient versus normal B-cells (FC > 10, FDR p < 0.01)

Gene Symbol Fold Change FDR p-value Deregulation in CLL Reference

INSM1 209.42 0.000137

ASCL1 202.32 0.000029

ABCA9 118.18 0.000114 overexpressed [17] [19] [20]

PAH 84.87 0.000166

MRO 82.52 0.000408

GABRB2 42.47 0.000495 overexpressed [21]

PAX9 38.71 0.000800

RNF150 27.45 0.000748

FHDC1 25.51 0.000537 overexpressed [17] [19] [20]

KCNJ11 20.52 0.000458 overexpressed [19] [20]

KSR2 20.37 0.000748 overexpressed [17] [20]

FGF2 18.37 0.000748 overexpressed [22]

GLDN 18.02 0.000881

EDNRB 12.07 0.000495

APP −21.43 0.000489 underexpressed [21]

RGS2 −24.38 0.000902 underexpressed [17] [19]

EBF1 −61.42 0.000976 underexpressed [17] [19]

RGS1 −98.36 0.000970 underexpressed [17] [23]

Information about gene deregulation in CLL and relevant references are shown
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proximity to the IGH enhancer due to the translocation.
PAH encodes for phenylalanine hydroxylase, an enzyme in-
volved in phenylalanine catabolism. To our knowledge, no
oncogenic properties have been assigned to the PAH gene
so far. Binding of ASCL1 on promoter sequences of the
MRO, EDNRB and RNF150 genes has been demonstrated
by ChIP in adult hippocampus-derived neural stem cells
[25]. The overexpression of GLDN and PAX9 has not been
previously described in CLL and these genes are also not
listed among the direct ASCL1 targets. INSM1, the gene
with the highest upregulation and the third most significant
in our gene set, is a well- established direct ASCL1 tran-
scriptional target in neural and neuroendocrine tissue as
well as in SCLC [26–28].

Discussion and conclusions
We report on a CLL patient bearing a t(12;14)(q23.2;q32.3).
So far, molecular characterization of one CLL case with a
t(12;14)(q23;q32) has been reported in the literature [13].
The chromosome 12 breakpoint was located about 1.4 Mb
distal to that found in our patient and disrupted the
CHST11 gene encoding for a Golgi-associated sulfo-
transferase. The translocation probably led to the ex-
pression of truncated versions of the CHST11 protein
with altered cellular distribution [13].
In the present case, the translocation led to the over-

expression of ASCL1 and the more proximal PAH gene
in the aberrant B–cells of the patient. ASCL1 plays a role
in the development of lung neuroendocrine cells [29],
thyroid C cells [30] and adrenal chromaffin cells [31], is
overexpressed in neuroendocrine tumors [32] and is a
promising therapeutic target in SCLC [27, 33]. Several
transcriptional targets of ASCL1 have been identified in
normal neural development and in cancer cells with
functions in NOTCH signaling, cell proliferation and dif-
ferentiation [25, 27, 33–37]. It is remarkable that ASCL1
acts as a pioneer TF, having the ability to access nucleo-
somal DNA, promote its opening and accessibility to other
TFs [36, 38, 39] and enable reprogramming non-neural
cells to induced neurons [40, 41].
According to a meta-analysis of microarray data in the

Oncomine database, ASCL1 was one of the top 1% over-
expressed genes in acute adult T-cell leukemia/lymph-
oma (FC: 3.76, p = 3.43E-5) [24, 42, 43], while reduced
expression of ASCL1 was reported in diffuse large B-cell,
primary effusion and mantle cell lymphoma [24, 43].
The biological consequences of the above observations
are currently unknown. According to the same database,
a study comparing the expression profiles of normal and
CLL peripheral mononuclear cells reported underexpression
of ASCL1 in CLL (FC =−3.07 p= 5.31E-4) [24, 44]. Never-
theless, this could not be confirmed by a study with a larger
patient cohort, comparing the same cell types [21, 24].
According to our qPCR results, there were no significant

ASCL1 expression differences between normal BM and
that of various CLL cytogenetic subsets (mean BM in-
filtration >70%) (Fig. 3).
Global gene expression analysis of the patient’s CLL

cells versus B-cells from healthy donors revealed a CLL
gene expression signature comprising of 55 genes, con-
cordant with published results of at least two studies
comparing the same cell types. INSM1, the gene with
the highest fold change in the patient, is a prominent
ASCL1 target [26, 27, 33, 35, 45]. It is likely that its
strong deregulation in the B-cells of our patient is a re-
sult of the ASCL1 overexpression. Nevertheless, since
the targets of a transcription factor can vary depending
on the cellular context, it is not possible to exactly pre-
dict which genes would actually be regulated by ASCL1
in a B-cell without performing functional studies.
INSM1 encodes for a conserved zinc-finger transcrip-

tional repressor [46], which controls neuroendocrine
differentiation and is overexpressed in the majority of
neuroendocrine tumors [26, 47]. Notably, INSM1 is also
able to exert its function by directly influencing signaling
pathways through protein-protein binding. For example,
its association with cyclin D1 (CCND1) has been reported
to cause cell cycle lengthening without triggering apop-
tosis [48].
Little is known about the potential role of INSM1 in

CLL. According to Liao et al. 2015 INSM1 expression is
higher in CLL cells with unmutated versus that with
mutated IGHV genes [17]. Ruiz-Lafuente et al. reported
induction of INSM1 in CLL cells but not in normal B-
cells upon treatment with IL-4 [17]. Since IL-4 stimula-
tion is part of the stromal interactions that protect CLL
cells from apoptosis, genes induced by IL-4 in CLL cells
could contribute to their survival [17]. The INSM1 over-
expression in the peripheral B-cells of our patient, possibly
taking place due to the ASCL1 overexpression, could pro-
vide a further hint for a potential role of INSM1 in CLL,
thus we propose the further examination of its expression
and possible role in CLL pathogenesis.
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