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Interstitial deletion at 11q14.2-11q22.1 may
cause severe learning difficulties, mental retardation
and mild heart defects in 13-year old male
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Abstract

Interstitial deletions of the long arm of chromosome 11 are rare, and they could be assumed as non-recurrent
chromosomal rearrangements due to high variability of the size and the breakpoints of the deleted region. The
exact region of the deletion was difficult to be determined before the use of molecular cytogenetic techniques
such as array comparative genomic hybridization (aCGH). Here, a 13-year old boy with severe learning difficulties,
mental retardation and mild heart defects is described. Conventional G-band karyotyping was performed and it is
found that the patient is a carrier of a de novo interstitial deletion on the long arm of chromosome 11, involving
11q14 and 11q22 breakpoints. Further investigation, using aCGH, specified the deleted region to 11q14.2-11q22.1.
There was a difficulty in correlating the genotype with the phenotype of the patient due to lack of similar cases in
literature. More studies should be done in order to understand the genetic background that underlies the
phenotypic differences observed in similar cases.

Background
Terminal deletions of the long arm of chromosome
11 have been numerously described, and they are as-
sociated with Jacobsen syndrome (OMIM 147791)
and characterized by thrombocytopenia, mental re-
tardation, short stature, congenital heart defect, and
characteristic facial dysmorphism [1, 2]. On the con-
trary, interstitial deletions of the long arm of chromo-
some 11 are less common and often not fine-mapped,
due to the similarity between band patterns (11q14
and 11q22) when conventional karyotype is performed
[3, 4]. So far, approximately 30 cases of 11q intersti-
tial deletions have been reported [3–24]. Nevertheless,
due to high variability of size and position of the
deleted regions, phenotype-genotype correlations have
been hard to evaluate due to the wide range of pheno-
typic features, ranging from normal to severe conditions
including developmental delay/mental retardation, fa-
cial dysmorphisms and other medical implications.

Moreover, before the introduction of molecular cyto-
genetic approaches, the resolution efficiency provided
by conventional karyotype analysis jointly with the sym-
metric 11q banding pattern [3, 4], limited the accuracy
of identification of breakpoints and precise deleted gen-
omic regions.

Case presentation
The patient, a 13-year old boy, was the first and only
child of unrelated healthy Caucasian parents. He was
born by cesarean section after a full term pregnancy.
Birth weight was 2,800 g (10th percentile), length
50 cm (50th percentile) and head circumference (HC)
35.5 cm (50th percentile). Neonatal and infancy periods
were uneventful; nevertheless his motor development
was delayed as he did not sit independently until the
age of 15 months or walk unaided until the age of
22 months.
At the age of 5, language delay was observed and

laboratory investigation was performed, including audio-
gram, biochemical and thyroid tests, which proved normal.
He received speech therapy for a two-year period and his
language difficulties resolved. He attended mainstream
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primary school with extra educational support and finished
this level at the age of 12 years. At the age of 13 years he
was referred for full developmental assessment because he
was experiencing severe learning difficulties in secondary
school. Upon physical examination, he was characterized as
quite a sociable child, with mild dysmorphic facial features
such as almond shaped eyes, hypertelorism, anteverted nos-
trils, and gothic palate. His weight at the time was 49 kg
(40th percentile), height 160 cm (60th percentile) and HC
54 cm (25th percentile). Upon neurological examination, he
showed mild motor delay with severe clumsiness but with-
out focal neurological signs. Ophthalmologic examination
was normal. Heart auscultation revealed a mild systolic
murmur.
Upon developmental evaluation, he was found to

function at the mental level of a 10-year old. His cog-
nitive abilities, according to the Wechsler Intelligence
Scale for Children test (WISC III), were assessed as
borderline, as his full-scale score was 75 with verbal
score 75 and performance score 80.
Extensive laboratory investigation followed, including

brain magnetic resonance imaging (MRI), electroenceph-
alogram, kidney-liver- spleen ultrasound, bone age, bio-
chemical tests, blood and urine amino acids, organic acids,
very low fatty acids, thyroid function, ACTH, FSH, LH,
DHEA-S, prolactin, estradiol e2, progesterone, testosterone,
17a-OH progesterone and IGF-1, all proved normal. Heart
ultrasound showed mild mitral valve prolapsed.

Material and methods
Metaphase chromosomes were obtained from phytohem-
agglutinin (PHA)-stimulated peripheral blood lymphocytes
and high resolution (thymidine treatment) G-banding
karyotype analysis was performed, using standard

procedures. The conventional cytogenetic analysis re-
vealed a de novo interstitial deletion on the long arm
of chromosome 11, involving 11q14 and 11q22 break-
points (Fig. 1).
To further investigate the specific finding, array-CGH

was performed by hybridizing the sample against a male
human reference commercial DNA sample (Promega bio-
tech) using an array-CGH platform that includes 60000
oligonucleotides distributed across the entire genome
(Agilent Technologies). The statistical test used as param-
eter to estimate the number of copies was ADAM-2
(provided by the DNA analytics software, Agilent Techn)
with a window of 0.5 Mb, A=6. Only those copy number
changes that affected at least 5 consecutive probes
with identically oriented change were considered as
Copy Number Variations (CNV). As a consequence,
for the majority of the genome, the average genomic
power of resolution of this analysis was 200 kilobases.
Array-CGH analyses detected an interstitial deletion

spanning region 11q14.2-11q22.1, genomic coordinates
chr11: 85,702,633-97,854,695 (Genomic coordinates
are listed according to genomic build GRCh37/hg19).
No additional pathogenetic Copy Number Variations
(CNVs) were detected and thus the molecular karyotype
was: arr 11q14.2q22.1 (85702633–97854695)x1 (Fig. 2).
The specific deletion contains approximately 12,15 Mb of
genomic material and includes 30 OMIM listed genes
(Table 1 and Fig. 3).

Discussion
Here we report a patient with a de novo 12.15 Mb intersti-
tial deletion of chromosome 11 long arm, spanning from
nt85702633 to nt97854695, exhibiting developmental delay,
borderline mental retardation, severe speech delay, and

Fig. 1 G-banding karyotype of the patient. It is illustrated the interstitial deletion on the long arm of chromosome 11
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some dysmorphic features. The genotype of the patient was
compared to 19 previously described patients carrying over-
lapping interstitial deletions of chromosome 11 long arm
(Fig. 4). Cases with uncertain or not accurately defined
breakpoints were not considered [4, 5, 13, 24].
Regarding these 19 cases, only six studies [9–12, 25, 26]

were conducted using molecular cytogenetic techniques,
such as a-CGH analysis with BAC clones or high-density
oligonucleotide probes. In the remaining cases, conven-
tional karyotype analysis and/or fluorescence in situ
hybridization analysis was performed in order to de-
fine the position and size of the deletions. Table 2
summarizes the genotypes and phenotypic features of
the present case and of the 19 cases with overlapping
interstitial deletions of chromosome 11 long arm.
As listed in Table 2, most of the patients with an overlap-

ping deletion of this region had mild to severe develop-
mental delay, short stature/growth delay, high narrow
palate or cleft palate/lip with or without migrognathia, and
minor digital anomalies. Other clinical features include
skeletal anomalies, brain anomalies, cranial dysmorphisms
(microcephaly, trigonocephaly), retinal dysgenesis/exuda-
tive vitroretinopathy (EVR), genital anomalies, kidney
anomalies and heart defects [7, 10, 11, 13, 19]. Regarding
the present case with the exception of hypertelorism, and
gothic palate our patient had none of these features.
However it is obvious (Table 2) that there are two cases,

both without phenotypic abnormalities or developmental
delay, which carry similar deletion with the present case. Li
et al. [8] described five cases of 11q14.3-q21 deletion trans-
mitted through three-generation kindred. The proband
showed short stature and mild attention deficit disorder
that required teaching assistant, all other family members
were healthy despite carrying the deletion. The deleted
region was mapped by FISH with overlapping BAC clones.
The entire contig spans 3,6 Mb, and the breakpoints are
within clones RP11-792 M23 and RP11-573 M3. In this
region there are few genes and only two (MTNBR1 and
NAALAD) are single copy genes. Other genes in this
region have at least one copy present elsewhere in the

genome that might compensate for the deleted copies of
these genes.
Goumy et al. [6] described three cases of 11q14.3-

q22.1 deletion transmitted in three-generation kindred.
The proband, a normal girl without dysmorphic features,
was tested during mother’s pregnancy by genetic amnio-
centesis because of a positive Down syndrome maternal
serum screening test at 15 weeks gestation. The deletion
was identified in the mother, who had toe camptodactyly
and ophthalmologic disorders, and in the phenotipically
normal grandfather. The minimal deletion size, mapped
by combining CGH analysis and FISH with BAC clones
was 8.5 Mb from RP11-372E19 to RP11-775E2. This region
contains almost 17 genes in common with those of our
case. There might be other genes with similar functions
located elsewhere in the genome. Another hypothesis that
could explain the lack of phenotypic abnormalities was the
haplosufficiency: the adequate functioning of the genes of
this region in single copy. Both paternal and maternal
origin in the transmission of the deletion, excluded genetic
imprinting as explanation of the normal phenotype.
Present case differs from these cases for the presence of

11q14.2 cytogenetic region, exactly from nt 85,668,485 to
the first absent BAC clone in case described by Li et al. [8]
approximately near the nt 89,255,000. In this region there
are genes that should be responsible for the phenotype
of this patient. Among the genes contained in the re-
gion, GRM5 (Glutamate receptor, metabotropic 5 gene
OMIM604102) is particularly interesting. Metabotropic
glutamate receptors (mGluRs) are G protein-coupled
receptors (GPCRs) which transduce signals from the
extracellular matrix to the cytoplasm by activating G
proteins. One prominent action of group I mGluRs is
to protect neurons from apoptotic death [27].
GRM5 plays an important role in modulating neural

activity and plasticity [28, 29]. Its signaling is required for
different forms of adaptive learning because impaired re-
ceptor function results in inappropriate retention of aver-
sive memories, which seems to be related with impaired
long-term potentiation in CA1 region and dentate gyrus of

Fig. 2 Ideogram of the deleted region as it is detected using array CGH. The interstitial deletion is at 11q14.2-11q22.1
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Table 1 OMIM listed genes included in the 11q14.2-11q22.1 region

Gene OMIM Start End Cytogenetic
region

Description Protein function

PICALM 603025 85668485 58750108 11q14.2 Phosphatidylinositol binding
clathrin assembly protein

Involved in cellular trafficking, regulation of
endocytosis, and clathrin-mediated vesicle formation

EED 605984 85955815 85989781 11q14.2 Embryonic ectoderm
development

Mediates repression of gene activity through histone
deacetylation

ME3 604626 86152150 86383678 11q14.2 Malic enzyme 3, NADP(+)-
dependent, mitochrondrial

Catalyzes the oxidative decarboxylation of malate
to pyruvate using either NAD+ or NADP+ as a cofactor

FZD4 604579 86656721 86666433 11q14.2 Frizzled homolog 4
(Drosophila)

Receptor for Wnt proteins

RAB38 606281 87846431 87908599 11q14.2 RAB38, member RAS
oncogene family

May be involved in melanosomal transport and docking

CTSC 602365 88026760 88070941 11q14.2 Cathepsin C Lysosomal protease capable if removing dipeptides from
the amino terminus of protein substrates

GRM5 604102 88237744 88796816 11q14.2 Glutamate receptor,
metabotropic 5

Transduce signals from extra cellular transmitters to the
inside of the cell by activating G proteins

TYR 606933 88911040 89028927 11q14.3 Tyrosinase (oculocutaneous
albinismIA)

Conversion of tyrosine to melanin

NOX4 605261 89057521 89231363 11q14.3 NAPDH pxidase 4 may function as catalytic component of an endothelial
NAPDH oxidase/may fulfill the function of oxygen sensor
in the kidney

FOLH1B 609020 89392465 89431886 11q14.3 Folate hydrolase 1B hydrolyzes beta-citrylglutamate/ found in the CNS during
pre-perinatal periods of development in the testis in adult males

TRIM49 606124 89530823 89541743 11q14.3 Tripartite motif containing 49 Protein-protein interaction. Expressed mostly in testis

NAAIAD2 611636 89867818 89925779 11q14.3 N-acetylated alpha-linked
acidic dipeptidase 2

NAALADase activity. Inactivate the peptide neurotransmitter
N-acetylaspartylglutamate

CHORDC1 604353 89933597 89956532 11q14.3 Cysteine and histidine-rich
domain (CHORD) containing 1

Function of the wildtype gene in nematode development

FAT3 612483 92085262 92629636 11q14.3 FAT tumor suppressor
homolog 3 (Drosophila)

Cell adhesion

MTNR1B 600804 92702789 92715948 11q14.3 Melatonun receptor 1B Receptor for malatonin, proton-coupled receptors

C11orf75 609477 93211638 93276546 11q21 Chromosome 1 open reading
frame 75

TAF1D 612823 93469095 93474703 11q21 TATA box binding protein Component of the transcription factor SL1/TIF-IB complex.
Downregulation induced apoptotic cell death

MED17 603810 93517405 93546496 11q21 Mediator complex subunit 17 Mammalian mediator of transcriptional regulation

PANX1 608420 93862094 93915139 11q21 Pannexin Structural component of the gap junctions and the
hemichannels

GPR83 605569 94110477 94134585 11q21 G protein-coupled receptor 83 Orphan receptor

MRE11A 600814 94150466 94227040 11q21 MRE11 meiotic recombination
11 homolog A

Double-strand break repair, DNA recombination,
maintenance of telomere integrity and meiosis

FUT4 104230 94277017 94283064 11q21 Fucosyltransferase 4 (alpha
(1,3)) myeloid-specific

Biosynthesis of lewis antigene

PIWIL4 610315 94300474 94354587 11q21 Piwi-like 4 (Drosophila) Development and maintenance of germline stem cells

KDM4D 609766 94706845 94732678 11q21 Lysine (K)-specific
demethylase 4D

Histone coding

SRSF8 603229 94800056 94804388 11q21 Serine/arginine-rich splicing
factor 8

Involved in pre-mrna alternative splicing

SESN3 607768 94906113 94964246 11q21 Sestrin 3 Normal regulation of blood glucose, insulin resistance

CEP57 607951 95523642 95565854 11q21 Centrosomal protein 57 kda Required for microtubule attachment to centrosomes

MTMR2 603557 95566044 95657371 11q21 Myotubularin related protein 2 Tyrosine phosphatase

MAML2 607537 95711440 96076344 11q21 Mastermind-like 2 (Drosphila) Transcriptional coactivator for NOTCH proteins

JRKL 603211 96123158 96126727 11q21 Jerky homolog-like (mouse) Not yet defined, probably nuclear regulatory protein
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the hippocampus [30, 31]. Several neurological and
neurodevelopmental disorders are associated with an
abnormal function of this gene such as Fragile X syndrome,
Schizophrenia anxiety, depression, and addiction [32–34].
All cases which overlaps our case, and in which the deletion
includes this gene region, presents developmental delay.
There are four other cases in which developmental delay

was present but the region containing this gene was not
deleted [16, 19, 20, 25]. However, the region deleted in this
four cases includes another Glutamate receptor family
gene in 11q22.3 GRIA4 (Glutamate Receptor Ionotrophic
Ampa 4) that mediates fast synaptic excitatory neurotrans-
mission (OMIM 138246) and this gene is also implied in
neurological disorders in mice [35].
The patients who had normal development had no

copy-number variations of both GRM5 and GRIA4 genes

[6, 8, 17]. Only in the case described by Sparkes et al. [11],
resulted a normal development despite the GRIA4 gene
deletion. When the deletions included both genes, there
was a more severe phenotype [20, 21]. We hypothesize
that both these genes could be associated with develop-
mental delay in 11q interstitial deletions.
The remaining features were impossible to be correlated

with any genotype because the deletions in different
cases seem to generate many different phenotypes.
These chromosomal deletions generally involve a large
number of genes, but most of these genes are not dos-
age sensitive and a single copy of the gene ensures its
function. In this situation, when a clinical phenotype
was observed, would always be appropriate to analyze
the genes on the intact chromosome in order to find
mutations. Another mechanism could be the presence

Fig. 3 The 11q14.2 – 11q22.1 region is haploinsufficient to the current patient. The red box shows the region which is deleted. Below the
chromosome ideogram are the transcripts of genes which are in the 11q14.2-11q22.1 region (http://genome.ucsc.edu/)

Fig. 4 Cases with overlapping interstitial deletions of chromosome 11 long arm. The blue lines show the deletion of each patient, and the pink
region illustrates the overlapping region of the present case with the other cases
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of copies or similar genes located elsewhere in the
genome that show a compensatory gene expression.
Also a deletion within a region subject to genomic maternal
or paternal imprinting might not cause pathological pheno-
type. Therefore further work should be done in animal
model organisms in order to fully understand the function
of these genes and the pathways that contribute to the
phenotype.

Conclusion
On the basis of current literature we are not yet able
to define a monosomy 11q phenotype. Many other
studies and accurate molecular characterization are
needed to understand the complex genetic and envir-
onmental relationship that underlie the phenotypic
differences observed in similar cases of chromosomal
rearrangements.

Consent
Written informed consent was obtained from the patient
for publication of this Case report and any accompanying
images. A copy of the written consent is available for review
by the Editor-in-Chief of this journal.
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