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Deciphering the pathogenic consequences of
chromosomal aberrations in human genetic
disease
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Abstract

Chromosomal aberrations include translocations, deletions, duplications, inversions, aneuploidies and complex
rearrangements. They underlie genetic disease in roughly 15% of patients with multiple congenital abnormalities
and/or mental retardation (MCA/MR). In genetic diagnostics, the pathogenicity of chromosomal aberrations in these
patients is typically assessed based on criteria such as phenotypic similarity to other patients with the same or
overlapping aberration, absence in healthy individuals, de novo occurrence, and protein coding gene content.
However, a thorough understanding of the molecular mechanisms that lead to MCA/MR as a result of chromosome
aberrations is often lacking. Chromosome aberrations can affect one or more genes in a complex manner, such as
by changing the regulation of gene expression, by disrupting exons, and by creating fusion genes. The precise
delineation of breakpoints by whole-genome sequencing enables the construction of local genomic architecture
and facilitates the prediction of the molecular determinants of the patient’s phenotype. Here, we review current
methods for breakpoint identification and their impact on the interpretation of chromosome aberrations in patients
with MCA/MR. In addition, we discuss opportunities to dissect disease mechanisms based on large-scale genomic
technologies and studies in model organisms.
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Introduction
Structural genomic variations (SVs) are generally regarded
as genetic changes with a size larger than 50 bp [1]. SVs
form a major source of common genetic variation in the
human population and they primarily comprise deletions,
(mobile element) insertions and tandem duplications [2].
Smaller structural variations occur much more frequently
than larger ones. Furthermore, there is significant puri-
fying selection against large and gene-disruptive copy
number variations (CNVs), indicating their considerable
phenotypic impact. The rates at which large CNVs
(>100 kb) arise de novo in the general population have
been conservatively estimated to be around 1.2×10−2

CNVs per germ line transmission [3]. This is relatively
low when compared to the rates of base substitutions
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[4-6]. However, large CNVs and SVs have a high chance
of affecting important genomic elements, which could
lead to congenital disease. In line with this, large copy
number changes are strongly enriched among patients
with idiopathic multiple congenital abnormalities and/or
mental retardation (MCA/MR) phenotypes compared to
normal individuals [7]. In addition, de novo CNVs are
found at higher frequency in MCA/MR patients (3.6×10−2

per germ line transmission) compared to control popula-
tions [8].
In spite of the clear association between large (de novo)

CNVs and other SVs (collectively known as chromosomal
aberrations) with MCA/MR phenotypes [9], precise
characterization of molecular mechanisms that cause
disease in individual patients is often unknown. This is
largely a result of the complex effects of breakpoints
on gene structure, function and expression. In the fol-
lowing sections we first provide an overview of current
methods for diagnostic detection and interpretation of
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chromosomal aberrations in MCA/MR patients. Subse-
quently, the introduction and relevance of new methods
for high-resolution dissection of breakpoints of chromo-
somal aberrations is discussed. Finally, we summarize the
possible molecular consequences of chromosome aberra-
tions for gene expression and function, and we discuss ap-
proaches for identification and unraveling the molecular
determinants of congenital disease phenotypes.

Review
Diagnostics of chromosome aberrations in patients with
MCA/MR
Current methods for detection of chromosome aberrations
in genetic diagnosis of idiopathic MCA/MR
(Mosaic) aneuploidies and chromosomal rearrangements
are a frequent cause of idiopathic MCA/MR. Starting in
1959 with the identification of trisomy-21 as the genetic
basis of Down syndrome [10], microscopic observation
of metaphase chromosomes has for several decades been
the method of choice for detecting chromosome abnor-
malities in MCA/MR patients. This includes both karyo-
typing of banded chromosomes and, since the nineties
of the last century, also fluorescence in situ hybridization
(FISH). In consecutive, unselected MCA/MR patients
karyotyping enables the detection of pathogenic chromo-
somal abnormalities in about 4% of cases (excluding Down
syndrome), despite its limited resolution to about 5–10 Mb.
The aberrations mainly include a single loss or gain of a
chromosomal segment (>90% of cases) [11].
The application of targeted FISH to detect rearrange-

ments that are beyond the resolution of chromosome band-
ing, adds another ~4% of diagnosed MCA/MR patients
[11]. Targeted FISH on metaphase chromosomes has been
particularly successful in the diagnosis of recurrent micro-
deletions that are mediated by nonhomologous allelic re-
combination (NAHR) between flanking low copy repeats
(LCRs), such as Velo-Cardio-Facial (VCF)/DiGeorge syn-
drome in 22q11.2, Williams-Beuren syndrome in 7q11.23
and Smith-Magenis syndrome in 17p11.2 (and many
others, that were more recently discovered using microar-
rays [12], or computationally predicted [13]). These recur-
rent aberrations can be efficiently identified by targeted
FISH if the patient’s phenotype has been recognized by a
clinican (“phenotype-first” approach).
In contrast, most non-recurrent, sporadic chromosome

rearrangements are characterized by breakpoints that are
more or less randomly located, as they are typically driven
by mechanisms of non-homologous repair such as nonho-
mologous end joining (NHEJ) and microhomology medi-
ated break induced replication (MMBIR) [14-16]. Many
of these private rearrangements may be associated with
unique clinical phenotypes, requiring a “genotype-first”
approach. The introduction of microarray-based aneu-
ploidy detection has enabled such a “genotype-first”,
discovery-based approach. With high-resolution micro-
array platforms, on which all protein-coding genes are
addressed with multiple probes, the diagnostic yield in
the population with MCA/MR referral is about 15%
[11,17]. Therefore, microarray-based aneuploidy detec-
tion has become the initial test in the laboratory work-
up of patients with idiopathic MCA/MR [17]. Limita-
tions of arrays include the inability to detect low-level
chromosomal mosaicism (<7-10%) and balanced rearrange-
ments. However, in diagnostics of idiopathic MCA/MR,
karyotyping would add less than 1% of pathogenic cases to
those detected by microarray, as shown by a survey of
36,325 consecutive MCA/MR cases [11].

Current methods for the assessment of the clinical relevance
of chromosomal imbalances in idiopathic MCA/MR
Before CNVs could be precisely delineated using microar-
rays, traditional approaches for assessing whether an im-
balance is causal for a patient’s clinical symptoms have
been based on (i) the phenotypic resemblance to other pa-
tients with an identical or largely overlapping imbalance,
(ii) the absence of the imbalance in a large number of
healthy individuals, and (iii) the segregation of the CNV in
the family, for example, de novo imbalances are consid-
ered to be likely pathogenic whereas those inherited from
an apparently healthy parent are not. These criteria still
hold true nowadays for the interpretation of CNVs [18].
However, the advent of the human genome sequence
(and all its associated databases for genome annotation)
has - together with the ability to precisely delineate im-
balances using arrays - provided additional, sequence
content-dependent features of CNVs. Most important,
the presence of a gene in the imbalance with proven
dosage effect or association with a known clinical dis-
order is considered as robust evidence for a pathogenic
effect. Public databases such as ECARUCA, DECIPHER,
ISCA, and PubMed (for comparison to other patients),
and the Database of Genomic Variants (DGV) (for
checking whether the CNV occurs in healthy individ-
uals) are indispensible for the routine diagnostic work-
flow in the clinic [17-20].
Additional methods are being developed based on

functional enrichment analysis of the genetic content of
CNVs [21]. For example, CNVs are more likely to con-
tribute to the patient’s phenotype if they contain genes
with temporal and spatial patterns of expression that are
in line with the phenotype seen in the patient, or if they
contain genes with mouse phenotypes similar to symp-
toms in the patient. Furthermore, it has been shown that
CNVs identified in patients with idiopathic MR are more
likely to be pathogenic if they contain genes with mouse
orthologues that cause abnormal neuron morphology or
neurodegenerative disease when disrupted [22,23]. More
recently, it was shown that CNVs in patients with MR or
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schizophrenia are enriched in miRNA genes with brain
related functions compared to common CNVs [24,25].

Sequencing of breakpoints from chromosomal
aberrations to decipher rearrangement structure and
identify affected genes
Detection of structural variation using next-generation
sequencing
The introduction of next-generation DNA sequencing
has accelerated the discovery of SVs in the human gen-
ome. In a landmark paper by Korbel et al., paired-end
sequencing was introduced to identify more than thou-
sand SVs in the human genome at unprecedented reso-
lution [26]. Paired-end sequencing involves the mapping
of pairs of sequence reads to the human reference gen-
ome [1]. These pairs are derived from the two ends of a
single genomic DNA segment. A larger distance between
the two reads that form a pair can be achieved by mate-
pair sequencing [26,27].
Genomic breakpoints are detected following mapping

of the read pairs to the reference genome. The mapping
locations and orientations of the two reads will be con-
cordant relative to each other if no breakpoint is present
in between the two reads with respect to the reference
genome. On the contrary, discordant mapping locations
and orientations indicate a possible structural genomic
change. Discordant read pair signatures that denote dif-
ferent types of structural variation are shown in Figure 1.
Because the analysis of discordant reads is dependent on
mapping of sequence reads in the vicinity of breakpoints,
this approach is less feasible for recurrent chromosomal
rearrangements.
Besides discordant read pair analysis, two other ap-

proaches are often used to detect structural genomic
variation based on next-generation sequencing [1]. The
analysis of the depth of sequence read coverage (DOC)
is of great help to determine copy number status, while
split read mapping gives insight into the precise break-
point junction sequence.

The use of paired-end sequencing to fine-map rearrangement
breakpoints in patients with MCA/MR
The first efforts to characterize genomic breakpoints of
chromosomal aberrations in MCA/MR patients were
performed by Chen et al. [28]. To limit sequencing
costs, these authors used paired-end sequencing of de-
rivative chromosomes isolated by flow sorting. Another
strategy to limit sequencing costs and efforts concerns
the sequence enrichment of breakpoint regions which
have been previously established based on karyotyping
or FISH studies [29,30]. Such methods involve the de-
sign of capture probes within breakpoint regions and
subsequent enrichment of these regions using on-array
or in-solution enrichment of genomic libraries.
With decreasing costs of next-generation sequencing,
various studies have described the use of whole-genome
sequencing to identify genomic breakpoints of balanced
and unbalanced chromosomal rearrangements at nu-
cleotide resolution [31-37]. Differences in approach in
these studies mostly comprise the generation of genomic
libraries with large (mate-pair) or short (paired-end) in-
sert sizes. This has implications for the amount of se-
quencing reads that are needed to capture breakpoints:
the smaller the insert-size of the library, the more se-
quencing reads are needed. The major conclusion from
these studies is that underlying gene defects can be dir-
ectly identified. In addition, the orientation of junction
fragments provides a precise view of the rearrangement
structure, which is impossible to reach by microarray or
cytogenetic investigation only. This is particularly im-
portant for complex genomic rearrangements where
multiple genomic segments have been rearranged, such
as those caused by chromothripsis (Figure 2) [35-37]. In
fact, sequencing has often revealed an unanticipated
complexity of chromosomal aberrations [29,32,38], such
as a high frequency of inversions associated with bal-
anced chromosomal rearrangements [37]. The high reso-
lution at which rearrangement breakpoints are mapped
using next-generation sequencing requires new nomen-
clature for their clinical reporting [39].
Mapping disease genes using paired-end sequencing
Next generation sequencing of chromosomal breakpoints
provides direct insight into the genomic elements –
e.g. genes or regulatory DNA sequences - which are af-
fected by the breakpoints. The precise definition of the
genomic breakpoints and the local architecture of the
chromosomal rearrangement is an essential first step to-
wards the understanding of genetic disease mechanisms.
For example, sequencing the breakpoints of a de novo
translocation or inversion provides a direct view on the
disrupted genes that may be relevant candidates genes for
disease [29,31,33,34,40-45]. What is clearly hampering in
most of these studies is the sporadic nature of the break-
points in patients with a balanced rearrangement. Thus, it
is difficult to establish a causal relationship between a gene
and a clinical phenotype. Only in exceptional cases mul-
tiple translocation carriers were found, leading to firm
associations between a gene and a phenotype [46-48].
An additional strategy to strengthen genotype-phenotype
relationships involves the assessment of patients with copy
number changes encompassing the same gene(s) as
disrupted by the balanced rearrangement breakpoints
[49-52]. The information derived from the sequencing
of breakpoints from balanced translocations can also
be of benefit to identify disease genes for microdele-
tion syndromes [52].



Figure 1 Examples of read pair signatures that indicate the presence of different types of chromosomal aberrations. Read pairs are
indicated in grey. Read pair analysis uses information about the mapping position and orientation of sequence reads within a pair relative to
each other.
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The molecular consequences of chromosome aberrations
The effects of breakpoints or copy number changes can
be versatile and multiple effects may result from a single
chromosomal aberration. The following paragraphs high-
light different molecular consequences of chromo-
somal aberrations observed in patients with congenital
phenotypes.

Dosage effects
Genes that are completely encompassed by a CNV undergo
a dosage change, which is expected to coincide with a
change in mRNA expression level. This may have severe
effects, because for a substantial amount of genes a sin-
gle functional copy is insufficient for normal gene func-
tion [53]. The impact of CNVs on mRNA expression
differences has been observed at the genome-wide level
in human cell lines [54]. Copy number status correlates
with mRNA expression but also genes outside of CNV
intervals show altered expression [55,56]. Combined
analysis of CNV and transcriptome data from patients
with autism spectrum disorder (ASD) revealed signifi-
cant enrichment of dysregulated mRNA expression for
genes within de novo CNVs when compared to common
CNVs [57]. At the level of individual CNVs, studies have
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Figure 2 Circos plot indicating de novo copy number changes and breakpoint junctions on chromosomes 1, 5 and 12 in a patient with
severe congenital abnormalities. The outer circle displays a partial chromosome ideogram (with numbers denoting megabase positions). The
two grey inner circles display the log ratios and allele frequencies of the copy number profile, respectively, based on Illumina SNP-array analysis.
The red dots indicate deletions. The colored lines in the middle part of the circle denote breakpoint junctions derived from mate-pair sequencing.
The color indicates the junction orientation. Blue = tail-to-head; green = head-to-tail; red = head-to-head inverted; yellow = tail-to-tail inverted. This
example illustrates that copy number profiling provides only a glimpse of the complexity of chromosomal aberrations.
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reported the effects of gene dosage on mRNA levels for
e.g. VCF syndrome deletion, Williams Beuren syndrome
deletion [58] and 16p11.2 deletion and duplication [59].
In the latter case, for virtually all genes spanned by the
CNV interval, gene dosage correlated well with mRNA
expression level.
To counteract the loss or gain of a chromosome (or

chromosomal segment), a phenomenon known as dosage
compensation can occur [60]. This effect may occur both
at the level of gene transcription and translation [61]. Dos-
age compensation could explain the lack of correlation be-
tween copy number loss and mRNA expression level for
some common CNVs in the human population [55]. Also,
only 29% of genes on chromosome 21 in patients with
Down syndrome show higher transcript levels, whereas
the other 71% of genes show dosage compensation or
variable expression among different patients [62]. A major
hurdle to precisely define effects of CNVs on gene expres-
sion is the general variability in mRNA expression be-
tween different individuals. Therefore, a matched control
experiment is often not available. A recent and very ele-
gant study has overcome this limitation and reported a
unique case: a monozygotic twin pair discordant for tri-
somy 21. Genome-wide differential expression patterns
between the twins uncovered the presence of gene ex-
pression dysregulation domains (GEDDs), which con-
tain either up- or downregulated genes [63].

Gene fusions
Gene fusions (also known as chimeric genes) can occur
when two genomic segments – each containing (part of )
a gene - join together and form a novel protein or a new
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promoter-gene fusion. Gene fusions are well studied in
cancer, where they form active subjects of positive selec-
tion during tumor development [64]. Yet, in patients
with MCA/MR the role of gene fusion is largely unclear.
A few reports have characterized gene fusions associated
with congenital disease phenotypes, often resulting from
a balanced translocation. The gene fusions can be classi-
fied into several different classes. First, bona-fide in-
frame gene fusions leading to novel, chimeric proteins
can arise [65,66]. In a patient with mental retardation,
ataxia and atrophy of the brain, a PAFAH1B3-CLK2 fu-
sion was found, but a gain-of-function effect could not
be observed [65]. The most likely explanation for the
phenotype in this patient was the truncation (functional
hemizygosity) of PAFAH1B3. Functional hemizygosity
was also suggested for an in-frame TNS3-FGFR1 gene
fusion, which led to impaired FGFR1 function [67]. In
other patients novel fusion proteins were observed,
which consisted of part of a known protein coupled to a
novel open reading frame that lacks homology to known
proteins [68-70]. A striking negative effect on mitochon-
drial function was observed for novel DISC1 fusions,
which involve part of the DISC1 protein coupled to a
novel peptide sequence, possibly accounting for psychi-
atric disease in a large family [71]. A second possibility
entails the fusion of a promoter to the coding regions
from another gene. However, this has not yet been de-
scribed for MCA/MR patients.
Two large-scale studies have used CNV datasets from

patients with autism spectrum disorders (ASD) and
schizophrenia, respectively [72,73]. An increased fre-
quency of brain-expressed in-frame gene fusions was
found in schizophrenia cases, but not in patients with
ASD. Two fusion genes in the schizophrenia cohort dis-
played different subcellular locations compared to their
parental genes, suggesting a role in disease etiology.
In all cases described above, the observed gene fusions

were unique to a single patient, precluding the establish-
ment of a causal relationship to the disease phenotype.
Clearly, determining the precise role of gene fusion in
congenital disease requires detection of breakpoints at
nucleotide resolution, identification of recurrent fusions
and in-depth functional characterization of individual
cases.

Deregulation of gene expression through dislocation and
disruption of non-coding elements
In addition to direct disruption of coding sequences
through a CNV or SV breakpoint, chromosomal rear-
rangements may also affect regulatory elements, which
in turn alter gene transcription. In fact, the altered regu-
lation caused by disruption of regulatory elements may
result in subtler gene expression changes - such as dur-
ing specific developmental stages or in specific tissues –
and not be a full loss of function (for review see: [74]).
This leads to different phenotypes depending on the type
of regulatory element that is affected or the severity of
the effect. For example, Pierre Robin sequence is caused
by chromosomal aberrations affecting noncoding enhan-
cer elements upstream of the SOX9 gene [75,76]. The
deregulation of SOX9 is determining the final pheno-
typic outcome: translocation breakpoints close to SOX9
typically result in campomelic dysplasia, whereas those
further upstream cause acampomelic campomelic dys-
plasia [77]. Overall, the skeletal phenotypes tend to be
less severe with increased distance between breakpoints
and SOX9 [77]. Besides distance to a gene, a second fac-
tor of importance for the molecular consequences of the
disruption of non-coding elements by chromosomal ab-
errations is the type of element that is disrupted [74].
Loss of enhancer function in the case of Pierre Robin se-
quence, causes reduced SOX9 expression. In contrast,
deletion of a small genomic silencer element just upstream
of the delta-globin gene, provokes fetal hemoglobin ex-
pression [78]. Another mechanism concerns the reloca-
tion of enhancer elements relative to coding regions,
causing them to control activity of new genes. Such a pos-
ition effect has been observed in a patient with an inver-
sion that dislocates the SHH gene and places it under the
control of a highly active limb bud enhancer element [79].
Systematic survey of deletions from the DECIPHER data-
base has revealed that 11.8% of patient phenotypes could
best be explained by enhancer adoption rather than mere
dosage effects of genes within the deletion interval [80].
These and other effects of chromosomal aberrations on
noncoding DNA elements have only recently been recog-
nized, but are essential for diagnostic interpretation [74].

Unmasking of recessive mutations by chromosomal
deletions
Whenever a deletion occurs, any recessive mutation on
the non-deleted homologous chromosome would become
unmasked, and could contribute to the phenotype. Indeed,
there is anecdotal evidence for the unmasking of a mu-
tated, pathogenic allele on the homologous, non-deleted
chromosome [81]. This phenomenon may be one of the
explanations for the phenotypic variability between unre-
lated patients with identical deletions. The best studied
case is the 3 Mb 22q11.21 deletion mediated by NAHR
between LCRs A and D that occurs de novo in about
90% of patients with DiGeorge/VCF syndrome [82]. For
example, mutations affecting the GP1BB gene have been
identified in several patients with features of both
DiGeorge/VCF syndrome and Bernard-Soulnier syndrome,
a rare autosomal recessive bleeding disorder [83,84]. Other
examples include the unmasking of a SCARF2 splice site
mutation in a patient with DiGeorge/VCF syndrome and
additional features of Van den Ende-Gupta syndrome,
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such as arachnocamptodactily and typical facial anomalies
such as blepharophimosis, beaked nose and malar hypo-
plasia [85], and the unmasking of SNAP29 frameshift mu-
tations in two patients who also had features of CEDNIK
syndrome (cerebral dysgenesis, neuropathy, ichthyosis and
keratoderma) [86]. It should be noted that these patients
were investigated in-depth because they displayed features
of more than one syndrome or condition. This suggests
that such patients are rare, exceptional cases. This is
supported by a the lack of evidence for the unmasking
of selected candidate genes in other recurrent deletion
syndromes, such as the 1q21.1 deletion associated with
thrombocytopenia-absent radius syndrome [87], the
16p13.11 deletion associated with MR and autism [88],
and the 16p11.2 deletion associated with autism [89].
There are also some examples of inherited deletions

that unmask a recessive pathogenic allele [81]. In theory,
this mechanism could explain the phenotypic difference
when there are affected and unaffected carriers of the
deletion in a family. This situation occurs, for example,
when there is an affected child with the deletion and an
unaffected, apparently healthy carrier parent. This theory
was tested in a cohort of 20 familial deletion cases [81].
Only in one case a 16.0-31.7 kb deletion containing only
the HSBP1 gene in 16q23.3 inherited from one parent
was unmasked by a 2.2 Mb deletion inherited from the
other parent.
In summary, the unmasking of pathogenic mutations

may be a rare phenomenon, both in recurrent, de novo
deletions and in familial deletions. It is possible, how-
ever, that this mechanism operates in more subtle ways,
i.e. by unmasking sequence variants that occur in the
general population. For example, the risk of developing
schizophrenia and other neuropsychiatric conditions in
22q11.2 deletion patients is dependent on DNA-sequence
polymorphisms on the intact chromosome that affect the
function or expression of genes such as COMT, PIK4CA,
and GNB1L [90]. There is a clear need for systematic stud-
ies of genetic variation in the non-deleted genes, including
miRNA genes [91] in large cohorts to assess the contribu-
tion of unmasking to our understanding of the phenotypic
variation between patients with identical deletions.

Strategies for functional characterization of chromosome
aberrations
Extensive functional characterization of chromosomal ab-
errations is needed to identify the critical molecular deter-
minants of a patient’s phenotype. It may well be that some
of the effects of breakpoints on gene function are not
harmful and can be regarded as passenger events, while
other effects are predominantly driving disease. To dis-
criminate between passenger and driver effects a variety of
approaches can be applied, ranging from large-scale gen-
omics to functional studies in model organisms.
Large-scale genomics technologies
The molecular effects of structural genomic variations
may expand far beyond the genomic region that is dir-
ectly affected by breakpoints or copy number change.
Genome-wide molecular profiling is helpful to pin-
point consequences of SVs in an unbiased fashion. For
example, mRNA expression analysis has been performed
in families including patients with ASD to identify autism-
susceptibility genes associated with CNVs [57]. One im-
portant limitation of mRNA expression studies is the
tissue type chosen for investigation. In most cases blood
is used as a proxy for expression in the brain. A second
limitation is the lack of a proper control dataset. Healthy
family members can be used as a control, but differences
in genetic background contribute already substantially
to gene-expression differences. Indeed, the study by Luo
et al. [57] showed that significantly misexpressed genes
are not restricted to probands, but are equally prevalent
in unaffected siblings. However, gene ontology analysis
revealed an enrichment of misexpressed genes in neural-
related pathways and misexpressed genes are localized
within pathogenic CNV intervals. Finally, the effects of
CNVs on gene expression may not be extending through-
out lifetime, as studies in mouse revealed temporary
compensatory loops of brain-expressed genes at spe-
cific developmental time-points [92].
Application of mRNA sequencing to a cohort of patients

with reciprocal 16p11.2 duplication or deletion revealed
most prominent changes within CNV intervals, but also
several effects in cis and trans [59]. These effects were as-
sociated with changes in long-range physical interactions
identified by Hi-C chromosome conformation capture
technology. Chromosome conformation capture methods
provide insight into nuclear organization and identify
chromosomal regions that physically interact with each
other [93]. SVs can change the organization of chromatin
and thereby affect transcription of nearby genes, as was
recently shown for deletion of the Williams-Beuren Syn-
drome region [94].
Finally, the impact of chromosomal rearrangements

and SVs on regulatory regions in the genome can be
identified by the analysis of histone modifications that
mark active promoters and enhancers, such as H3K4Me3
and H3K27Ac, respectively [95]. Effects of SVs on histone
modifications have hardly been studied, but may provide
important information on global changes in gene regula-
tion [94].

Engineering rearrangements using genome editing
technology
Genome engineering with programmable nucleases pro-
vides an extremely powerful approach for introducing spe-
cific mutations into human cells or model organisms [96].
These systems are often used to enable gene disruption by
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generating a nuclease-mediated double-stranded break,
leading to frame-shifts or other disruptive mutations.
However, expression of two site-specific nucleases al-
lows engineering of chromosomal rearrangements, such
as deletions, inversions and translocations [97-100]. For
example, cancer–related translocations and inversions
leading to fusion genes were mimicked in human cells
[99]. These technological breakthroughs provide unique
opportunities to engineer specific chromosomal rear-
rangements that occur in patients with MCA/MR. Such
an approach circumvents measurement noise resulting
from differences in genetic background, which has, for
example, hampered the detection of gene-expression
changes in case–control studies for various microdele-
tion or microduplication syndromes [57,59,101,102].
Large-scale genomics analyses or specific functional as-
says on cells with engineered rearrangements and con-
trols will reveal detailed insight into genome-wide
effects. Furthermore, introduction of chromosomal ab-
errations in induced pluripotent stem (iPS) cell lines
[103] or primary neuronal cell cultures [104] allows
modeling facets of human disease, such as neuronal dif-
ferentiation. Finally, the effects of chromosomal rear-
rangements on non-coding elements in the genome can
best be studied by deleting an entire locus by cutting
with two site-specific nucleases.

Understanding functional consequences of chromosomal
aberrations in model organisms
Functional characterization of chromosomal aberrations
in model organisms can be of high value to understand
disease mechanisms or strengthen genotype-phenotype
associations. Several mouse models have been generated
to investigate recurrent microdeletion and microdupli-
cation syndromes. An elegant study described mouse
models with CNVs that affect regions syntenic to hu-
man chromosomal band 17p11.2 [105]. Deletions and
duplications in 17p11.2 lead to Smith-Magenis and
Potocki-Lupski syndrome, respectively. These mouse
models recapitulate much of the phenotypes observed
in human subjects. The dosage of the RAI1 gene ap-
pears to be most critical to these phenotypes [106,107].
The effects of the CNVs were further studied in several
mouse tissues revealing that many expression changes
map to the engineered CNV intervals. Strikingly, re-
storing copy number by generating a mouse strain with
a deletion and a duplication chromosome did not com-
pletely rescue some neurobehavioral phenotypes. Thus,
a disturbance of local genomic architecture also plays a
role in disease, in addition to gene dosage effects. Simi-
lar studies in mouse models of the 16p11.2 deletion
and duplication were instrumental to map the changes
in expression networks that account for the ASD phe-
notypes that are associated with these CNVs [59].
Zebrafish (Danio rerio) form an alternative to mouse
models and are exceptionally suited for studying early
embryonic development. Furthermore, zebrafish embryos
can be easily manipulated allowing quick evaluation of
many genes and mutations [108]. Overexpression in zeb-
rafish embryos of genes within the 16p11.2 CNV interval
revealed KCTD13 as the major driver of the microcephaly
phenotype seen in patients with the 16p11.2 duplications
[109]. On the contrary, knockdown of KCTD13 resulted
in macrocephaly, which is typical for 16p11.2 deletion car-
riers. These results indicate that a single gene may form
the primary driver of disease even though the entire
16p11.2 CNV region encompasses 29 genes. Thus, screen-
ing of large numbers of genes that are affected by dosage
changes or breakpoints of chromosomal aberrations is ex-
tremely informative to understand disease mechanisms. A
similar approach of functional testing in zebrafish was
used to dissect the phenotypic determinants of the 8q24.3
copy number variant [110]. This revealed that two genes,
SCRIB and PUF60, are primary drivers of disease. These
selected examples demonstrate that zebrafish appears a
very powerful model system to systematically dissect the
functional consequences of chromosomal aberrations.

Conclusions
The genetics clinic of the future
The resolution, speed and breadth at which a patient’s
genome can be scanned for pathogenic changes have in-
creased dramatically over the last decade. The use of mi-
croarrays as the initial genetic test is likely to change in
the coming years. By the application of whole exome se-
quencing, pathogenic gains and losses can be identified on
a genome-wide scale, in parallel to pathogenic mutations
in (protein coding) genes [111-113]. Although whole ex-
ome sequencing has lead to rapid discovery of disease
genes, trends are shifting towards whole genome sequen-
cing, as this is now an affordable method to identify all
classes of genetic changes across the entire genome. In a
recent study, whole genome sequencing was used to map
de novo genetic changes in a group of patients with severe
intellectual disability, which had not received a diagnosis
based on previous CNV profiling and exome sequencing
[114]. In this cohort additional mutations and CNVs were
identified in coding regions, enabling a genetic diagnosis
in 20 out of 50 patients.
In the genetics clinic of the future, whole genome se-

quencing to detect pathogenic SVs and CNVs will be-
come a routine analysis. The application of microscopy
will then be limited to the determination of the structure
of chromosomal rearrangements, such as, for example,
the discrimination between trisomy-21 and Robertsonian
translocations involving chromosome 21 in Down syn-
drome, as in 1959. Also the detection of low-level mosai-
cism for aneuploidy of entire or rearranged chromosomes
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may remain dependent on microscopy in the near future.
A suspicion of mosaicism should be raised for patients
with normal NGS findings who display asymmetric body
features, and “deep karyotyping” of multiple tissues may
be required to arrive at a clinical diagnosis [115].
The major challenge will be to address the functional

consequences of pathogenic variants by large-scale gen-
omic approaches and systematic studies in model sys-
tems. These efforts are needed to fully understand the
molecular effects of chromosomal aberrations and their
role in disease etiology. Detailed insight in disease mecha-
nisms will improve diagnostics, allow for pre-symptomatic
screening for complications, support short and long-term
prognosis and design of targeted and personalized medical
treatment strategies.
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