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Abstract

Background: Diffuse astrocytomas are characterized by their highly variable biological behavior. The possibility that
tumors develop novel aberrations, with relevant biological properties, is often neglected. In this study, we present
two cases of diffuse astrocytoma in which additional cytogenetic and epigenetic markers with potential influence
on cell proliferation or differentiation were detected at relapse.

Findings: The biopsies taken from the primary and recurrent tumors of two patients were analyzed with molecular
methods to detect copy number variations (CNVs), gene mutations and epigenetic changes. Both cases were
characterized by the R132H mutation in the isocitrate dehydrogenase 1 (IDHT) gene. Features typical of
astrocytomas, such as copy-neutral loss of heterozygosity at 17p and the deletion of the cyclin-dependent kinase
inhibitor 2A (CDKN2A) gene, were also detected in both cases. These markers were present in the primary and
recurrent lesions. Other aberrations, predominantly deletions or amplifications of chromosomal segments and the
hypermethylation of gene promoters, were detected in the recurrent lesions.

Conclusions: The IDHT mutation was the primary event, as previously reported. According to our observations, the
methylation of promoters constituted later events, which may have further disrupted cell proliferation and/or

differentiation, together with additional CNVs.
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Background

Diffuse astrocytomas constitute one of the major subtypes
of glial tumors, with highly variable biological behavior. In
recent years, several genetic markers have been identified
that predict the responses to defined therapeutic strat-
egies, and can therefore affect the outcomes of individual
patients. One example is the presence of an IDHI gene
mutation, which confers a better overall prognosis and
longer progression-free survival on patients with grade
II-1II astrocytoma, irrespective of treatment [1, 2]. The
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methylation status of the O-6-methylguanine-DNA
methyltransferase (MGMT) promoter plays a similar
role in the choice of therapy [3].

The majority of recurrent gliomas are characterized by a
shared set of mutated genes and chromosomal aberra-
tions, which probably derive from the same precursor cell
[4, 5]. Therefore, many clinicians therapeutically target the
molecular markers defined in the initial tumor. However,
recurrent lesions appear after an asymptomatic period in
the majority of patients, despite defined multidrug chemo-
therapy and radical surgical resection. The possibility that
the tumor develops novel aberrations, with relevant bio-
logical properties, is often neglected.

In this study, we report two cases of diffuse astrocytoma
in which additional cytogenetic and epigenetic markers,
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Fig. 1 Time line representing the dates of resection and the type of treatment the case no. 1 received

with potential effects on cell proliferation or differenti- number variations (CNVs) in the CDKN2A (9p21.3),

ation, were detected at the time of relapse. EGFR (7pl2), PTEN (10q23.3), RBI (13ql4.2) and

TP53 (17p13.1) genes, in 1p and 19q regions. I-FISH
Methods was performed according to the manufacturer’s recom-
Interphase fluorescence in situ hybridization (I-FISH) mendations. The cut-off values were established in

Dual-color I-FISH with LSI and/or CEP DNA probes previous studies as 5 % for deletions and 2.5 % for
(Abbott Vysis, Chicago, IL) was used to analyze copy amplifications [6].
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Fig. 2 Molecular cytogenetic and epigenetic analyses of the three lesions of case no. 1. a Results of a SNP array for each lesion, with the
selection of three chromosomes, in which additional changes were detected. Red bars indicate deletions of a chromosomal region. Green bars
represent amplifications, and CN-LOH is marked with gray boxes. b Result of I-FISH analysis confirming and extending the SNP array findings. 1,3,
deletion of 19913 probe; 2, amplification of 13q34; 4, multiple amplifications of 13g34 probe; 5, amplification of 13934 with monoallelic loss of
the RBT gene; and 6, trisomy of chromosome 7
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DNA isolation

The homogenized tumor tissues were used to isolate the
genomic DNA (gDNA) with the DNeasy Blood and Tissue
Kit (Qiagen Inc., Germantown, MD), according to the
manufacturer’s protocol. gDNA obtained from peripheral
blood was isolated by GenElute Blood Genomic DNA Kit
(Sigma-Aldrich, St. Louis, MO).

SNP array

The gDNA (200 ng) was hybridized onto the
HumanCytoSNP-12 (v2.1) BeadChip array (Illumina, San
Diego, CA), according to the manufacturer’s protocol. The
array was scanned with a BeadArray Reader (Illumina)
and the scan was analyzed with the BlueFuse Multi soft-
ware v4.1 (Illumina). The detection limit of the SNP arrays
was 15 % of cell clones.

MLPA

Mutations in the IDH1/IDH2 genes were detected with
the P370 BRAF-IDHI1-IDH2 probemix (MRC-Holland,
Amsterdam, Netherlands). The promoter methylation of
MGMT and six mismatch repair genes was investigated
with the methylation-specific MLPA (MS-MLPA) using
MEO11 Mismatch Repair genes probemix (MRC-Holland).
Both MLPA analyses were performed according to the
manufacturer’s protocols.

MS-PCR

MS-PCR was performed according previously pub-
lished protocol [7]. Bisulfide conversion was performed
with the EZ DNA Methylation-Gold™ Kit (Zymo
Research, Orange, CA). The products of PCR were
separated on 2 % agarose gel stained with SERVA DNA
Stain Clear G (SERVA Electrophoresis GmbH,
Heidelberg, Germany).

Results

Both patients were diagnosed with astrocytoma and treated
at the Department of Neurosurgery, Central Military
Hospital and 1st Faculty of Medicine, Charles University,
Prague, Czech Republic. The patients gave their written
consent for the use of their biological material for research
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purposes. The tumor tissues were taken during routine
neurosurgical procedures and peripheral blood was used
as the negative control. All resections were characterized
by I-FISH, SNP array, MLPA and MS-PCR.

Case no. 1 was a male patient who was diagnosed with
gemistocytic astrocytoma (WHO grade II) at the age of
31 years. Six years later, a second radical resection (no
tumor remnant was detected) was performed and the
tumor was determined to be a diffuse astrocytoma
(WHO grade II). A third resection (anaplastic astrocy-
toma WHO grade III) was performed 5 months later
(Fig. 1). The tumor was localized in the left frontal lobe.
The patient is currently undergoing treatment with
chemotherapy and his survival is 101 months.

Mutation R132H in the IDH1 gene was detected in all re-
sections. The first resection was characterized by deletions,
amplifications and CN-LOH on chromosomes 3, 7p, 9q,
12q, 13q and 19q (Fig. 2, Table 1). The changes in 13q and
19q were verified with I-FISH. No hypermethylation of
the MGMT promoter or any other promoter analyzed
was detected (average ratio > 25 %) [8]. The second re-
section included the same CNVs as the first, with additional
changes on 10p, 13q and 19p. The hypermethylation of the
MGMT promoter was confirmed in this resection. Add-
itional deletions at 8q11.1q22.3 and 10q22.3g23.1, and
trisomy of chromosome 7 (7 % of cells), detected only with
[-FISH, were found in the third resection.

Case no. 2 was a female patient diagnosed with recur-
rent anaplastic astrocytoma (WHO grade III) at the age
of 36 years. The second resection (anaplastic astrocy-
toma, WHO grade III) was performed 10 months later
(Fig. 3). The tumor was localized in left parietal lobe.
The patient was treated with chemotherapy, but died
1 year after the second resection from further tumor
progression. Patient’s survival was 87 months.

Both resections were characterized by the R132H mu-
tation in the IDHI gene, CNVs including chromosomes
X, 5, 6, 16, 17 and 22 and chromosomal arms 4q, 7q, 9p,
10q, 11p, 13q, 14q, 18q and 19p (Fig. 4, Table 2). A chro-
mothripsis was also detected on chromosome arm 13q.
The first specimen had several unique features: CN-
LOH on chromosomes 2, 3p, 12q, and 21 and deletion

time line: g
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2007
first symptoms

Fig. 3 Time line representing the dates of resection and the type of treatment the case no. 2 received
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Fig. 4 Molecular cytogenetic and epigenetic analyses of the three lesions of case no. 2. a Results of the SNP array for each lesion, with the selection of
three chromosomes, in which the additional changes were detected. Red bars indicate the deletion of a chromosomal region. Green bars represent
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of 15q. The second resection was defined by CN-LOH
on 1q and 2q, and the hypermethylation of the MLH3
and MGMT promoters. Methylation of MHL3 promoter
was verified by MS-PCR (Fig. 5). I-FISH analyses verified
the deletion of CDKN2A, PTEN and 6q.

Discussion

Gliomas represent typical examples of multistep oncogen-
esis, in which new mutations are acquired under clonal se-
lection, and the tumor can thus evolve to a more
aggressive form [9]. Both our cases were characterized by
a set of CNVs that was present in all the samples acquired
for each patient, even after the radical resection of the pre-
vious lesion (Figs. 2, 4 and Tables 1, 2). However, whereas
case no. 1 showed the typical acquisition of genetic and
epigenetic aberrations in each step of the evolution of his
astrocytoma, case no. 2 was characterized by different

additional changes in each resection. These findings sup-
port the theory of the monoclonal origin of astrocytomas,
and also suggest that a specific set of genetic features,
typical for each patient, are necessary to maintain the glial
cells in the tumor state [9, 10].

The IDHI gene was mutated in both primary lesions.
The mutated form of the IDHI gene leads to the epigen-
etic deregulation described as the ‘glioma CpG island
methylator phenotype’ [11]. Therefore, the MGMT
hypermethylation observed in both cases and the methy-
lation of the MLH3 promoter in case no. 2 might result
from the mutated IDHI gene. The methylation of both
promoters always occurred as a secondary event in the
recurrent lesion, so our finding supports the hypothesis
that IDH1 mutation is the primary event in glioma car-
cinogenesis [12]. The methylation of the MLH3 pro-
moter is a new finding, and is reported to appear in
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BLANK Methylated
control DNA
primers: W u M w u M

Fig. 5 Verification of MLH3 promoter methylation by MS-PCR. Three sets of primers designed to recognize unconverted DNA (W primers), converted
unmethylated DNA (U primers), and converted methylated DNA (M primers) were used for each bisulfite-treated DNA
A\

CASE no. 1:

1. resection 2. resection

3. resection
w u M W u M w u M

CASE no. 2:
1. resection 2. resection
primers: W u M w u M

27 % of astrocytomas [7], although its role in glioma is
yet to be investigated.

Chromothripsis was recently described in gliomas with
IDHI1 gene mutation. Although no prognostic signifi-
cance was observed in that study [13], it is generally be-
lieved that chromothripsis contributes to tumorigenesis.
We observed chromothripsis on 13q in the astrocytoma
of patient no. 2, who died after the third resection from
tumor progression. Whether chromothripsis was one of
the triggers of tumor progression remains to be clarified.

Progression towards a higher WHO grade occurred
between the second and third resection in case no. 1.
The additional aberrations that occurred between these
lesions were deletions at 8q11.1q22.3, which contains
166 OMIM genes, and at 10q22.3q23.1 where 13 genes
are localized. Two of these genes are neuregulin 3
(NRG3, 10q23.1), which encodes an oligodendrocyte sur-
vival factor [14], and nibrin (NBN, 8q21.3), which en-
codes a protein crucial for maintaining genomic stability
by affecting the DNA damage signaling pathway [15].
Therefore, the deletion of these genes might influence
the tumorigenic potential of astrocytoma.

Conclusions

Our data suggest that each of investigated astrocytomas
share a set of CNVs and epigenetic modifications that
are necessary for maintaining the malignant status of
glial cells during tumor evolution. However, new genetic
or epigenetic markers, such as deletions on 8q,10q or
the methylation of the MLH3 promoter, may occur in
response to clonal selection. The emergence of new ab-
errations, caused by treatment or of random gains that

improve clonal proliferation may also influence the pa-
tient’s response to treatment. MutS homolog 6 (MSH6)
may be one such example. Its mutation is induced by
temozolomide treatment and causes drug resistance in
the affected glioblastomas [16].

Therefore, each tumor recurrence must be genetically
and epigenetically characterized to allow the correct
therapeutic decision to be made. The methylation of the
MLH3 promoter, the deletion of the NGR3 and NBN
genes or chromothripsis on 13q observed in our study
are potential phenomena that might influence tumor cell
behavior and thus modulate the tumor’s responsiveness
to treatment.
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