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Abstract

Interstitial deletions of the short arm of chromosome 6 are rare and have been associated with developmental
delay, hypotonia, congenital anomalies, and dysmorphic features. We used array comparative genomic
hybridization in a South Carolina Autism Project (SCAP) cohort of 97 subjects with autism spectrum disorders
(ASDs) and identified an ~ 54 Mb deletion on chromosome 6p22.3-p23 in a 15-year-old patient with intellectual
disability and ASDs. Subsequent database queries revealed five additional individuals with overlapping
submicroscopic deletions and presenting with developmental and speech delay, seizures, behavioral abnormalities,
heart defects, and dysmorphic features. The deletion found in the SCAP patient harbors ATXNT, DTNBP1, JARID2,
and NHLRCT that we propose may be responsible for ASDs and developmental delay.
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Background
Deletions involving the distal part of the short arm of
chromosome 6 are relatively rare. Terminal deletions of
6p24-pter have been associated with developmental
delay, brain malformations (including Dandy-Walker
malformation), anterior eye chamber abnormalities,
hearing loss, ear abnormalities, micrognathia, and heart
defects [1-6]. Patients with larger sized deletions of
6p23-pter also presented with microcephaly, genital
anomalies, language impairment, and delayed motor
development [1,3,5,7-14]. The identified ocular develop-
mental abnormalities are caused by deficiency of the
dosage sensitive FOXCI gene (MIM 01090) [15-20]. In
addition, deletions and duplications involving FOXCI
have been shown recently to be responsible for Dandy-
Walker malformation [21].

Interstitial deletions of 6p22-p24 have been reported
even less often and are generally associated with
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psychomotor and growth delay, hypotonia as well as sev-
eral congenital abnormalities, including hydrocephalus,
microcephaly, structural eye abnormalities, hypertelorism,
low set and rotated ears, nasal anomalies, micrognathia,
palatal abnormalities, short folded neck, defects of heart,
kidney, and feet, abnormal genitalia, and abnormal fingers
with hypoplastic nails [4,5,13,22-26].

Here, we describe six individuals, five of whom have
overlapping interstitial deletions in chromosome 6p22.3-
p24.3 encompassing ATXNI. The majority of patients
had neurological or behavioral abnormalities, including
developmental and speech delay, autism spectrum disor-
ders (ASDs), attention deficit hyperactivity disorder
(ADHD), repetitive behaviors, and various dysmorphic
features.

Clinical reports

Patient 1

This 15-year-old male proband was enrolled in the South
Carolina Autism Project (SCAP) study at the J.C. Self
Research Institute of Human Genetics at the Greenwood
Genetics Center in Greenwood, South Carolina. He was

© 2012 Celestino-Soper et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:pawels@bcm.edu
http://creativecommons.org/licenses/by/2.0

Celestino-Soper et al. Molecular Cytogenetics 2012, 5:17
http://www.molecularcytogenetics.org/content/5/1/17

the second child of healthy parents. The pregnancy and
delivery were uneventful. He was developmentally
delayed, used a few words until 3 years of age, and
remained nonverbal until 7-8 years of age. At 15 years of
age, he used about six words but no phrases or sentences.
The proband was also socially inappropriate and was
classified in the autism spectrum according to ADOS and
ADI-R testing. He had narrow facies, flat midface, over-
bite, slight prominence and jutting of the tissue of chin,
and pits on the skin at the base of the nasal septum. His
eyes appeared to be recessed due to flat midface, and his
neck was long (Figure 1a). There were some flaring or
winging of the scapulae. Wood’s lamp exam revealed
confluent minimally hypopigmented blotches about the
size of a half dollar over his sacrum. Thumb tissues were
somewhat broad distally. He had short thumbnails, broad
and short feet, short and broad great toes, long second
toes, and short third toes. Deep tendon reflexes were 1+
in the upper and lower limbs, and plantar reflexes were
flexor. The father was unavailable for testing. This patient
died at the age of 26 years following intestinal rupture.
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Patient 2

This four-year-old male proband had developmental and
speech delay, repetitive movements, hyperactivity, and
possible ASDs; however, no formal ASDs testing was
performed. Metabolic studies did not reveal any
abnormalities. There were no dysmorphic features. A 2/
6 systolic murmur was observed. Reportedly, the mother
and the older brother of this patient are mentally dis-
abled. DNA from the proband’s older brother was not
available.

Patient 3

This newborn female patient passed away soon after
birth due to multiple congenital defects. The autopsy
report described low set ears, bilateral partial aniridia,
incomplete palpebral fissures bilaterally, micrognathia,
shortened philtrum, redundant nuchal folds, two super-
numerary nipples, hypoplastic toe nails, enlarged heart
with multiple congenital defects (dilated right atrium,
interrupted aortic arch, dilated pulmonary trunk with
superiorly placed left pulmonary artery take-off, patent
foramen ovale, two left and one right pulmonary veins

Figure 1 Patients 1 (A), 4 (B-C), and 6 (D).
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draining to left atrium, perimembranous ventricular sep-
tal defect with portion of tricuspid valve extending
through VSD, patent ductus arteriosus, and narrowed
aortic and mitral valves), incomplete lobation of the
right upper and middle lung lobes, bicornuate uterus,
diastasis recti, bilateral simian creases of the hands, and
anteriorly placed anus. The parents were not available
for further studies.

Patient 4

This male patient was first seen at the age of six years. He
was born by spontaneous vaginal delivery. His mother
reported that the fetus was exposed to cigarette smoke
and a large amount of alcohol. He presented with devel-
opmental delay, seizure disorder, attention defficit hyper-
activity disorder (ADHD) diagnosed at 24 months,
behavioral problems, anger and impulse control pro-
blems, speech problems, difficulties expressing himself,
craniofacial dysmorphology, long face, almond shaped
eyes, low set ears with forward facing lobules, thick mala-
ligned philtrum, tall chin with retrognathia and overbite,
pectus carinatum, toe abnormalities, and clubbed foot
(Figure 1b, ¢). His father was described by the mother as
having speech problems. Metabolic screening and fragile
X testing of the proband were normal. Blood specimens
from the parents were not available. He required right
tibial and proximal fibular epiphysiodesis for leg length
discrepancy at the age of 15. Currently, he is 17 years old
with significant developmental delays and behavioral
issues.

Patient 5

A 7-year-old-girl was described as being nondysmorphic
and having developmental and speech delay, bilateral
strabismus (corrected at four years of age), and three
generalized seizures without fever at four months of age.
Her EEG, MRI and CT were normal. The patient also
had an ongoing iron deficiency, for which she was being
treated. The mother had an uncomplicated pregnancy
and an induced vaginal delivery. The parents are
healthy, as are the older two full sisters and half sister.
Patient 6

This three-year-old male patient was born after an
induced vaginal delivery due to maternal hypertension.
There were no complications during the pregnancy. He
was described as having stocky appearance, frontal
upsweep, wide spaced and deep set eyes, broad forehead,
mild micrognathia (status post tracheostomy), and small
thumbs (Figure 1d). Other physical findings included
biparietal bossing, small ears, narrow alveolar archis,
missing teeth, tracheostomy scar, flared ribs, and bilateral
clinodactyly. He had tiny frontal lobe hemorrhages on an
MRI performed a few days after his birth. CT showed an
arachnoid cyst. Additionally, he had hypotonia, a heart
murmur, atrial septal defect, and bicuspid aortic valve,
mandibular hypoplasia, a history of jaw distraction, heel
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cord release, asthma and recurrent aspiration pneumonia,
a history of G-tube (removed), eczema, possible submu-
cous cleft palate, speech problems, mild hearing loss on
Auditory Brainstem Response Evaluation, fatigue, a his-
tory of febrile seizures, lack of coordination, and global
developmental and learning delays. At the time of his
visit, he was very hyperactive and did not speak any
words. He was diagnosed with sensory processing disor-
der with developmental dyspraxia. The parents reported
that he used two signs, had better receptive than expres-
sive language (with a lot of body language), was easily
distracted, destructive, and wild. Blood specimens from
the parents were not available.

Results

Using array comparative genomic hybridization (array
CGH), in patient 1 with ASDs from the SCAP collection,
we identified an ~ 5.4 Mb deletion on chromosome
6p22.3-p23, harboring 21 RefSeq genes (Figure 2a) and
sequenced its breakpoints. The distal breakpoint
(chr6:13,662,096) maps within a LINE element (L1MEe)
and the proximal breakpoint (chr6:19,042,218) maps
within a unique sequence. There was no microhomology
between the deletion breakpoints (Figure 2¢). G-banded
chromosome slides were retrospectively reviewed at the
Greenwood Genetics Center and an interstitial deletion
6p22.3p23 was detected (data not shown). Polymerase
chain reaction (PCR) in the proband’s mother showed
that she was not a carrier for the deletion (Figure 2b).

Although the father of patient 1 was not available for
analysis, we attempted to determine the deletion origin
by CAG repeats polymorphism in ATXNI, a gene
located within the deletion, and independently by SNP
array analysis. The results of ATXNI polyglutamine
expansion were inconclusive (data not shown). SNP ana-
lysis showed that all 1,193 patient’s SNPs in the deleted
region (on the normal chromosome) matched the
mother’s SNPs for that region, and that 85% (33,541/
39,459) of the patient SNPs in the non-deleted region of
chromosome 6 matched the mother’s SNPs. Thus, these
results indicate that it is highly likely that the normal
allele was inherited from the patient’s mother and that
the allele with the deletion arose on the paternal chro-
mosome 6 (either inherited or de novo).

Array CGH images for deletions in patients 2-6 are
shown in Figure 2a. Patient 2 had a 6p22.3 deletion of
approximately 1 Mb that involves the ATXN1I, FLJ23152,
RBM?24, and CAP2 genes. The deletion was confirmed by
fluorescence in situ hybridization (FISH) analysis and
was also found in the patient’s mother, who was reported
to have some degree of mental disability. Patient 3, who
passed away soon after birth, had a deletion of approxi-
mately 14.6 Mb on chromosome 6p22.3-p24.3 that
involves 58 RefSeq genes. Retrospective high-resolution
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Figure 2 Chromosome 6p deletion in patients 1-6 - a) Array CGH probe plots in patients 1-6. X axis, chromosome 6 position; Y axis, log,
ratio. Semitransparent filled boxes on CGH plots highlight the region of aberration. b) Patient 1-specific junction fragment is not present in his
unaffected mother (Mo) or unaffected control (Co). M, marker. ¢) Chromatogram showing the breakpoint fusion in the patient 1-specific junction
fragment. d) Metaphase FISH showing a deletion at 6p22.3 in patient 5. Chromosome 6p22.3-specific BAC clone RP11-140A3 is labeled in red,
and the chromosome 6 centromere control probe D671 is labeled in green. The presence of one red signal indicates deletion of 6p22.3 on one
homologue (arrow). e) Interphase FISH showing a deletion at 6p24.1-p22.3 in patient 6. Chromosome 6p23-specific BAC clone RP11-127P7 is
labeled in red, and the chromosome 6 centromere probe is labeled in green as a control. The presence of one red signal indicates deletion on
one homologue (del 6). NI6, normal chromosome 6.




Celestino-Soper et al. Molecular Cytogenetics 2012, 5:17
http://www.molecularcytogenetics.org/content/5/1/17

partial karyotype analysis confirmed the interstitial dele-
tion of 6p22.3-p24.3 (data not shown). Patient 4 had a
deletion on chromosome 6p23-p24.3 of approximately
3.6 Mb that involves 28 RefSeq genes. Patient 5 had a
6p22.3 deletion of approximately 5.2 Mb that involves 18
RefSeq genes (Figure 2a, d). Parental FISH studies
revealed that the deletion was de novo. Patient 6 had a
deletion on chromosome bands 6p22.3-p24.1 of approxi-
mately 8.8 Mb that involves 34 RefSeq genes (Figure 2a,
e). Patient 6 also had a 2.7 Mb gain on chromosome
15q11.2 (chr15:20,565,530-23,300,182), including the
BP1-BP2 region, which has been observed in other pro-
bands and their normal parents and therefore most likely
represents a familial copy-number variant.

Deletion frequency in control populations

A query of the Database of Genomic Variants revealed
no CNVs larger than 200 kb within the largest deletion
reported in this study (patient 3). No exonic deletions
involving ATXNI were found in six control groups con-
sisting of 2792 individuals [27], 2493 individuals [28],
2026 individuals [29], 1152 individuals [30], 450 indivi-
duals [31], and 270 individuals [32].

Discussion
ASDs ([MIM 209850]) embody a group of behavioral
abnormalities, including restricted and repetitive beha-
viors, and/or defects in social interaction and/or com-
munication. Cytogenetic abnormalities were initially
reported in 25-30% of individuals with ASDs and dys-
morphic features [33], whereas pathological CNVs have
been found in 5-10% of patients with milder ASDs
through the use of oligonucleotide microarrays [34-38].
Using array CGH to search for CNVs that may be
associated with ASDs in the patients from the SCAP
collection, we identified a deletion at chromosome
6p22.3-p23 in a 15 year-old boy with ASDs. Further
database [Medical Genetics Laboratories (MGL) and Sig-
nature Genomic Laboratories (SGL) diagnostic labora-
tories] and literature queries revealed additional five and
12 overlapping interstitial deletions, respectively.
Patients 1, 2, and 4-6 had developmental and speech
delays, features commonly seen in the published patients
with the deletions in chromosome 6p22.3-p24.3 (Table
1). Patients 4-6 also had seizures, ADHD or hyperactiv-
ity, or repetitive behaviors. In addition, eight out of the
10 patients (pts A, C, E-H, J, and K) with interstitial
deletions involving 6p22.3-p24.3 described in the litera-
ture (Table 1) had speech delay and one had hyperactiv-
ity. Patient 3, who passed away shortly after birth, and
patients B and D [23,24], evaluated at 9 and 13 months
of age, respectively, were too young to receive a diagno-
sis of ASDs and to display some of the behavioral
abnormalities described above.
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Patient 2 also presented with ASDs, suggesting that one
or more loci within chromosome 6p22.3-24.3 may play a
role in the development of ASDs. In support of this
notion, a DECIPHER (Database of Chromosomal Imbal-
ance and Phenotype in Humans Using Ensembl
Resources) [39] patient (ID 249613) with an ~ 4.7 Mb
interstitial deletion at chromosome 6p22.3 had autistic
behavior in addition to hypotonia, developmental delay/
intellectual disability, downslanting palpebral fissures,
and strabismus (Table 1). Moreover, a patient with ASDs
was reported to have a de novo ~ 1.3 Mb interstitial dele-
tion at 6p23 (Table 1) [34]. However, this patient also
had a de novo 2 Mb deletion in chromosome 13q14.12-
ql4.13.

Sixteen deletions (pts 2-6, A-G, and I-L) overlap with
the deletion found in patient 1, who had a diagnosis of
ASDs (Table 1). Thirteen (pts 2, 4-6, A, C, E-G, and I-L)
out of those 16 patients (Table 1) had ASDs and/or some
of the ASDs associated features: speech delay, ADHD or
hyperactivity, or behavioral abnormalities [40,41]. We
propose that some of the following genes may be respon-
sible for the ASDs features and should be considered in
further research testing in patients with ASDs: ATXN1
(deleted in 10 patients), JARID2 (deleted in eight
patients), DTNBP1 (deleted in eight patients), and
NHLRCI (deleted in eight patients) (Table 2).

Ten out of 13 patients with ATXNI deletion (pts 1-3,
5, 6, A-E, G, ], and K) had ASDs, speech delay, ADHD
or hyperactivity, or other behavioral abnormalities
(Table 1). CAG trinucleotide extensions of 41-81 repeats
within the coding region of ATXNI are responsible for
the autosomal dominant spinocerebellar ataxia 1 (SCA1
[MIM 164400]), a neurodegenerative disorder with pro-
gressive cerebellar degeneration. ATXNI is also pro-
posed to function as a regulator of gene expression [42].
Interestingly, Atxnl homozygous knockout mice were
shown to share aberrations with a knock-in mouse
model of SCA1 that contained the polyglutamine exten-
sion [43,44]. Despite the fact that the knockout mice did
not develop SCA1 or progressive cerebellar degenera-
tion, both models had abnormalities in spatial learning
and memory, motor learning and coordination, and in
cerebellar gene expression [43,44]. Additionally, a meta-
analysis has suggested that SNPs within ATXNI are
associated with intelligence quotient in the background
of ADHD [45] and Bremer et al. [22] proposed that hap-
loinsufficiency of ATXNI may therefore contribute to
the learning difficulties observed in the patients harbor-
ing a 6p22 deletion. Given its importance in brain func-
tion and behavior abnormalities in mouse models, we
speculate that heterozygous deletions that affect ATXN1
function may be involved with the outcomes of develop-
mental delay and ASDs, either alone or in combination
with other gene deletions.



Table 1 Clinical features of 18 patients with interstitial deletions in 6p22-p24

Pt Gender Chr6 region Coordinates (hg19) Size  Inheritance Age DD/ Speech ASDs Hyper Repetitive SZ Hypotonia CHD Brain  Dysmorphic
(Mb)@ ® ID  delay activity/ behavior defect  features®
ADHD
1 M p22.3-p23 13662096-19042218 54 NM 15 + + + + N/A - + - N/A +
Yy
2 M p22.3 16572367-17543199 1.0 M 4y + + + + + - - (d) N/A -
3 F p22.3-p24.3 9621501-24218259 14.6 UK Tm N/A N/A N/A N/A N/A N/ N/A + - +
A
4 M p23-p24.3 10269968-13915223 36 UK 17 + + - + + - - - +
Yy
5 F p22.3 16186391-21421705 52 DN 7y - N/A N/A - N/A N/A -
M p22.3-p24.1 12058814-20896726 88 UK 3y (e) + N/A + + +
A M p22.2-p25.2 or (2.3-4.2) - (25.2-27.0) or N/A DN 3y N/A N/A N/A N/ + + N/A
p21.33-p23 (134-15.2) - (304-32.1) A
B M p22.3-p24 (7.1-134) - (15.2-25.2) N/A DN 9m + N/A N/A N/A N/A N/ N/A + + +
A
C M p22.1/p22.2-p23 144 -216 N/A UK 5+ + N/A () N/A N/ + N/A  N/A +
y A
D F p22.3-p23/p24.1 119-187 N/A UK 13+ N/A N/A N/A N/A N/ + + + +
m A
E F p22.3-p24.1 (13.0-14.0) - 21.7 N/A UK 34 + + N/A N/A N/A N/ + + + +
m A
F M p22.3-p24.1 100 - 158 N/A NM 20+ N/A - N/A N/A + (9 N/ + - - +
y A
G M p22.3-p24.2 100 - 187 N/A DN 4y + + N/A N/A N/A N/ N/A - + +
A
H M p24.2-p25.1 (4.2-6.1) - 104-11.9) N/A DN 23 N/A + N/A N/A N/A N/ N/A + - +
m A
M p23 13889301-15153952 13 DN N/A N/A - N/A + N/A N/A N/ N/A N/A  N/A N/A
A
J F p22.1-p23 14446670-27741682 133 DN 16 + + N/A + N/A N/ N/A + - +
y A
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Table 1 Clinical features of 18 patients with interstitial deletions in 6p22-p24 (Continued)

K F p22.3 16132021-23152021 7.0 DN 4y o+ + - - N/A N/ - + - +
A
L™ UK p22.3 18829825-23576125 47 UK N/A  + N/A + N/A N/A N/ + N/A  N/A +
A
Total 15/ 12/12  4/8 5/7 3/3 3/ 8/12 914 5/M 15/17
15 5

@ Minimum size in Mb.

b Age at last clinical visit. Y, years old; m, moths old.

€ Dysmorphic features for patients 1-6 is are listed in Clinical Reports.

9 2/6 systolic murmur.

€ Sensory processing disorder with developmental dyspraxia.

fPoor concentration

9 Behavioral problems included aggressiveness and tactile aversiveness.

" DECIPHER declares that those who carried out the original analysis and collection of the data bear no responsibility for the further analysis or interpretation of it by the recipient or its registered users.

A, [25]; B, [24]; C, P1 from [23]; D, P2 from [23]; E, 91-145 from [4]; F, 95-800 from [4]; G, PF from [4]; H, [13]; |, AU010604 from [34]; J, [26]; K, [22]; L, DECIPHER patient ID 249613 [39]. +, feature present; -, feature
absent; ASDs, autism spectrum disorders; CHD, congenic heart defect; DD, developmental delay; DN, de novo; F, female; ID, intellectual disability; M, male; M, maternal; NM, not maternal; SD, speech delay; SZ,
seizures; N/A, information not available; Pt, patient identification; UK, unknown.
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Table 2 Characterization of the selected genes on 6p22-p24
Gene Function® Disease Association References
Symbol
MIM  Entrez Gene
ID
ATXNT* RNA and protein binding; transcriptional repressor activity SCAT (MIM 164400) 601556 6310
CAP2 Actin binding UK N/A 10486
CD83 Immune response; signal transduction UK 604534 9308
CDKAL1 Metal ion binding Psoriasis (MIM 177900) 611259 54901
DTNBPT* Organelle biogenesis; neuronal function HPS (MIM 203300); schizophrenia 607145 84062
(MIM 181500)
E2F3 DNA binding, transcription activator activity, control of cell cycle UK 600427 1871
FLJ23152 UK (hypothetical protein) UK N/A 401236
D4 Transcription repressor and co-repressor activity UK 600581 3400
JARID2* DNA, chromatin, and protein binding; transcription repressor activity; UK 601594 3720
CNS development
MBOAT]1 Acetyltransferase activity, phospholipid biosynthesis Dauwerse-Peters Syndrome (MIM 611732 154141
611733)
NHLRCT* E3 ubiquitin ligase activity MELF (MIM 254780) 608072 378884
RBM24 RNA and nucleotide binding UK N/A 221662
RNF182 Ubiquitin-protein ligase activity UK N/A 221687

@ Based on Gene Ontology Annotation [71].

* Strong candidate genes for autism or autistic features given their role in the brain function or development or involvement in neurological disorders.
CNS, central nervous system; HPS, Hermansky-Pudlak syndrome; MELF, myoclonic epilepsy of Lafora; N/A, not available; SCA1, spinocerebellar ataxia 1; UK,

unknown.

Homozygous missense point mutations in DTNBPI
have been found in patients with Hermansky-Pudlak syn-
drome (HPS [MIM 203300]), an autosomal recessive dis-
ease with features that include albinism, pulmonary
fibrosis, and bleeding [46]. DTNBP1 has been proposed to
function in organelle biogenesis [46], presynaptic gluta-
mate release in rat neurons [47], neural plasticity in Droso-
phila [48], and to localize to axons in mouse cerebellum
and hippocampus [49]. Additionally, a meta-analysis study
found an association of SNPs in DNTBPI with schizophre-
nia (SCZD [MIM 181500]) [50,51]. Finally, DTNBP1I has
been connected with autistic features observed sometimes
in patients with Duchenne muscular dystrophy (DMD
[MIM 310200]) [52-54]. DTNBP1 binds to alpha and beta
dystrobrevins, which compose the dystrophin-associated
protein complex (DPC) [49].

JARID? is expressed in embryonic and adult human
neurons [55] and may function as a transcriptional repres-
sor [56]; its mouse homolog Jmij is necessary for proper
neural tube formation and cardiac development [57].
Recently, a significant association was found between a
JARID2 SNP (rs7766973) and autism [58], making this
gene another candidate for ASDs.

Homozygous deletions, insertions, missense, or non-
sense mutations in NHLRCI have been found in indivi-
duals with myoclonic epilepsy of Lafora (MELF [MIM
254780]), an autosomal recessive disorder characterized
by rapid and progressive adolescent-onset epilepsy,

mental and motor deterioration, and short survival.
NHLRC1 functions as an E3 ubiquitin ligase that med-
iates degradation of EPM2A (or LAFORIN). Mutations
that disturb EPM2A degradation, leading to the accu-
mulation of Lafora bodies, are also causative for MELF
[59].

Although most individuals with deletions in chromo-
some 6p22.3-p24.3 display developmental delay, speech
delay, and ASDs or other behavioral abnormalities, there
is no single locus that is deleted in all patients with 6p22-
p24 deletion (Figure 3). Penetrance of the phenotype
caused by mutations in specific genes in this region is
likely incomplete and may depend on the presence of
modifiers found in the non-deleted alleles, regulatory
regions, or other genes elsewhere in the genome. In addi-
tion, under-ascertainment with the lack of use of proper
ASDs diagnostic tools such as ADOS and ADI-R may con-
fuse the phenotype-genotype correlations.

Finally, four of the six patients described in this study
had variable dysmorphic features, including craniofacial
dysmorphisms, structural ear defects, and hands and feet
abnormalities, which are commonly found in individuals
described in the literature. Similar to the behavioral, devel-
opmental, and intellectual abnormalities described above,
there is no single locus that is deleted in all individuals
with 6p22-p24 deletion that may explain these dysmorphic
features. Of note, other features that are commonly seen
in patients described in the literature, such as congenital
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Figure 3 Extent and gene (RefSeq) content of chromosome 6p22-p24 deletions. Labeling of horizontal bars representing deletions

described in the literature are as follows: A, [25]; B, [24]; C, P1 from [23]; D, P2 from [23]; E, 91-145 from [4]; F, 95-800 from [4]; G, PF from [4]; H,
[13]; 1, AU010604 from [34]; J, [26]; K, [22]; and L, DECIPHER patient ID 249613 [39]. Blue regions depict the maximum extents of the deletions.
Longest gene isoforms are shown. Histone gene cluster on 6p22.1-p22.2 is not depicted due to space limitations. Gene names are positioned
below or to the left of genes. Green bars represent individuals from the literature, who were reported to have ASDs. Gene names in blue
represent strong candidates for ASDs or autistic features given their role in the brain function and development or involvement in neurological

disorders (see Table 2). Red vertical bar depicts the smallest deletion overlap, involving 13 deletions (patients 1-3, 5, 6, A-E, G, J, and K). There are
four RefSeq genes in this region: ATXN1, FLJ23152, RBM24, and CAP2. See Table 2 for gene functions. Pt, patient.
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heart defects and hypotonia, were not found in all patients
described in this report.

Methods

Consents

Written informed consents were approved by the Institu-
tional Review Board of Self Regional Hospital at Green-
wood, SC, for the J.C. Self Research Institute of Human
Genetics (IRB 24), the Institutional Review Board for
Human Subject Research at Baylor College of Medicine
(H-25466), and by the Institutional Review Board of Spo-
kane (study number 1500) and were obtained for patients
1, 4 and 6, and patient 5, respectively.

Chromosomal microarray analysis

For patient 1, DNA was extracted from peripheral blood
and lymphoblastoid cell line. DNA from the cell line was
used for initial array CGH analysis at Baylor College of
Medicine (BCM). DNA from peripheral blood was used to
confirm the array CGH findings. For patients 2-4 and 6,
DNA was extracted from whole blood using the Puregene
DNA isolation kit (Gentra System, Inc., Minneapolis,
MN). For patient 5, a blood specimen was sent to SGL, in
Spokane, Washington for clinical array CGH analysis. Par-
ental DNA was only tested by FISH.

All arrays used in this study were designed and analyzed
based on genome build hgl8 (NCBI Build 36, March
2006). The coordinates found in tables and figures were
converted to hgl9 (GRCh 37), February 2009 using UCSC
lifttOver [60].

Patient 1 was tested for copy-number variants (CNVs)
using array CGH with an Agilent custom designed exon
targeted microarray with coverage for 294 ASDs candidate
genes (44 K, design ID 019729, Agilent Technologies, Inc.,
Santa Clara, CA) [61]. Patients 2-4 and 6 were studied
using Agilent OLIGO custom clinical microarrays versions
7.4 OLIGO, 6.3 OLIGO, 6.4 OLIGO, and 8.0 OLIGO,
respectively, designed at the MGL at BCM [62-65]. Patient
5 was studied using the 105 K-feature SignatureChip
Oligo Solution” whole-genome custom microarray manu-
factured by Agilent for SGL [66]. Additionally, the Agilent
catalog SurePrint G3 Human CGH Microarray 1 x 1 M of
design ID 021529 was used to confirm CNVs in patients 1,
3, and 4.

The protocols for DNA digestion, labeling, purifica-
tion, hybridization, array scan, and analysis of the clini-
cal arrays followed the manufacturer’s instructions with
some modifications as previously described [63,66,67].

SNP array analysis

SNP genotyping for chromosome 6 was done in patient
1 and his mother using the commercially available Illu-
mina Human 610-Quad BeadChip Kit (Illumina, Inc.,
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San Diego, CA). Arrays were scanned using the Illumina
Iscan with Autoloader2. SNP genotyping and absence of
heterozygosity analyses were performed using the Illu-
mina GenomeStudio data analysis software.

FISH analysis

Confirmatory FISH analyses were performed in patients 2
and 4-6 using standard cytogenetic procedures with bac-
terial artificial chromosome (BAC) clones RP11-346 F18,
RP11-637019, RP11-140A3, and RP11-127P7, respectively.
The parental samples were tested for patients 2 and 5.

PCR and sequence analysis

PCR to confirm the 6p22.3-p23 deletion and to amplify
the junction fragment in patient 1 was performed using
Takara LA PCR kit (Takara Bio, Inc., Shiga, Japan) with
the forward primer 5 - TGGTGTAGTTAAGGG-
GAAAGAGAGAGGAG - 3 and the reverse primer 5 -
CTGCAGTATAAGCATACTACTACCCACTTAGGG -
3’ (Sigma-Aldrich Corp., St. Louis, MO). To test the
patient’s mother for a low level somatic mosaicism,
which might have been missed by the array CGH assay,
PCR was performed using GoTaq"™ Flexi DNA Polymer-
ase kit (Promega Corporation, Madison, WI) with the
forward primer 5 - TTTGGATTGGGAGGAATGAA -
3’ and reverse primer 5 - GGGGAAAGAAACGGAA-
CATC - 3 (Sigma-Aldrich Corp.). PCR products were
analyzed using 1% agarose gel electrophoresis, purified
from the agarose gel using the PCR Purification Kit
(Qiagen, Valencia, CA), and then sent for Sanger
dideoxy sequencing (SeqWright and Lone Star, Hous-
ton, TX).

ATXN1 (ATAXINT) STR extension analysis

To determine the size of the polyglutamine track in the
ATXNI gene, we followed the previously published pro-
cedures with minor modifications [68-70]. PCR was per-
formed using Applied Biosystems Amplitaq’s PCR kit
(Applied Biosystems, Foster City, CA) with forward pri-
mer 5 - AACTGGAAATGTGGACGTAC - 3’ and
reverse primer 5 - CAACATGGGCAGTCTGAG - 3’
(Integrated DNA Technologies, Inc., Coralville, IA). PCR
products were analyzed by electrophoresis on a sequen-
cing polyacrylamide gel. The gel was visualized by auto-
radiography at -70°C overnight.
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