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Abstract

Molecular cytogenetic and cytogenomic studies have made a contribution to genetics of epilepsy. However, current
genomic research of this devastative condition is generally focused on the molecular genetic aspects (i.e. gene hunt-
ing, detecting mutations in known epilepsy-associated genes, searching monogenic causes of epilepsy). Nonetheless,
chromosomal abnormalities and copy number variants (CNVs) represent an important part of genetic defects causing
epilepsy. Moreover, somatic chromosomal mosaicism and genome/chromosome instability seem to be a possible
mechanism for a wide spectrum of epileptic conditions. This idea becomes even more attracting taking into account
the potential of molecular neurocytogenetic (neurocytogenomic) studies of the epileptic brain. Unfortunately,
analyses of chromosome numbers and structure in the affected brain or epileptogenic brain foci are rarely performed.
Therefore, one may conclude that cytogenomic area of genomic epileptology is poorly researched. Accordingly,
molecular cytogenetic and cytogenomic studies of the clinical cohorts and molecular neurocytogenetic analyses of
the epileptic brain appear to be required. Here, we have performed a theoretical analysis to define the targets of the
aforementioned studies and to highlight future directions for molecular cytogenetic and cytogenomic research of
epileptic disorders in the widest sense. To succeed, we have formed a consortium, which is planned to perform at
least a part of suggested research. Taking into account the nature of the communication, ‘cytogenomic epileptology”
has been introduced to cover the research efforts in this field of medical genomics and epileptology. Additionally,
initial results of studying cytogenomic variations in the Russian neurodevelopmental cohort are reviewed with special
attention to epilepsy. In total, we have concluded that (i) epilepsy-associated cytogenomic variations require more
profound research; (i) ontological analyses of epilepsy genes affected by chromosomal rearrangements and/or CNVs
with unraveling pathways implicating epilepsy-associated genes are beneficial for epileptology; (iii) molecular neuro-
cytogenetic (neurocytogenomic) analysis of postoperative samples are warranted in patients suffering from epileptic
disorders.
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Introduction

The last decade has seen a large number of achievements
in genetics or genomics of epilepsy. Probably, genomic
studies of epileptic disorders have demonstrated one of
the most successful explorations of monogenic causes in
a heterogeneous group of diseases. These data have been
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condition [1, 2]. However, in contrast to monogenic
epilepsies, epileptic disorders caused by chromosomal
aberrations are rarely addressed. Simple querying in
browseable scientific databases (e.g. https://pubmed.
ncbinlm.nih.gov/ or https://scholar.google.com/) dem-
onstrates a bias towards monogenic epilepsies.

Cytogenomic variations (i.e. chromosomal abnormali-
ties and copy number variants or CNVs) are generally
addressed by advanced molecular cytogenetic techniques
for scanning chromosomal/subchromosomal/intragenic
imbalances (array comparative genomic hybridization
(CGH) or SNP array) during analysis of neurodevelop-
mental cohorts (i.e. cohorts of children with intellectual
disability, autism, epilepsy and/or congenital malforma-
tions) [3-8]. These studies generally focus on disentan-
gling the genomic sources for epilepsy as a symptom [3,
9]. Additionally, searching for CNVs associated with idio-
pathic neurodevelopmental disorders allows the determi-
nation of causative variations in epileptic cases [10-12].
Therefore, it is not surprising that cytogenomic varia-
tions manifesting as individual CNVs or CNV burdens
are more profoundly studied as to chromosomal abnor-
malities in the molecular genetic context.

It has long been demonstrated that numerous chro-
mosomal disorders/syndromes exhibit epileptic seizures
[13]. However, molecular definition of loci and intracel-
lular pathways affected by chromosomal aberrations
remain usually elusive in the epileptic context. It is rea-
sonable to suggest that genomic complexity of chromo-
somal rearrangements, which encompass from tens to
hundreds of genes, hinders the possibility of uncover-
ing molecular and cellular pathways to epilepsy in each
affected individual. Since this sophistication leads to dif-
ficulties in developing the treatment of epilepsy, clini-
cal interest is limited in cases of epileptic chromosomal
abnormalities. Consequently, a large number of patients
with chromosomal disorders and epilepsy cannot get
appropriate care and treatment. To solve the problem,
specific interpretational/bioinformatic methods are
required for unraveling molecular mechanisms of epi-
lepsy in chromosomal disorders.

Chromosomal imbalances affecting brain functioning
are common and are able to involve random genomic loci
of any size or even entire chromosomes (e.g. aneuploidy
or gains/losses of whole chromosomes in cellular nuclei)
[10, 14]. Accordingly, to describe molecular mechanisms
for specific epileptic condition in an affected individual,
localization and ontologies of epilepsy-associated genes
as well as candidate processes for epileptiform activity
are to be known.

Somatic mosaicism is another source for alterations
to functioning of the central nervous system. Molecu-
lar genetic analyses have repeatedly demonstrated that
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tissue-specific (brain-specific) mosaicism for causative
mutations is detectable in individuals with neurodevel-
opmental diseases including a wide spectrum of epileptic
disorders [15—-18]. Generally, epilepsy is associated with
the presence of cellular population affected by a mutation
(gene mutation) and cellular population with the same
mutation in the affected brain. More precisely, abnor-
mal cells are more likely to be concentrated in epilepsy-
associated brain lesions [19, 20]. On the other hand, as
shown by a series of studies of the diseased brain (neuro-
cytogenetic or neurocytogenomic studies), a broad spec-
trum of brain diseases (psychiatric, neurodegenerative
and neurobehavioral diseases) is shown to be associated
with aneuploidy, structural chromosome abnormali-
ties, CNVs, and genome/chromosome instability (for
review, see [21-26]). Furthermore, the levels of mosai-
cism and rates of chromosome/genome instability gen-
erally increase through ontogeny [27-29]. These aspects
of dynamic behavior of cellular genomes have not been
addressed in epilepsy. In total, it seems that there is need
for selecting numerous targets for cytogenomic analyses
of the brain in individuals suffering from epilepsy.

A brieflook at cytogenomics of epilepsy or, as we prefer
to call it, cytogenomic epileptology allows an intermedi-
ate conclusion that there are several key questions, which
are required to be answered to get new insights into chro-
mosomal mechanisms and molecular/cellular pathways
of epileptic disorders. We intend this communication to
serve a first step forward to the answers. Since a number
of previous consortium efforts in genomic research of
epilepsy were recognized as successful [30], we decided
to form a consortium dedicated to cytogenomic epilep-
tology gathering a number of experts in cytogenomics
and genetics of epilepsy. Our theoretical work and review
of previously reported (preliminary) data are presented
here-below.

Cytogenomic variations: chromosomal abnormalities

and beyond

Swimming in an ocean of articles describing genetic
defects in epilepsy, one may distinguish a proportion of
reports describing cases of chromosomal aberrations
in individuals with epileptiform activity. However, the
overwhelming majority of these cases are applicable for
epilepsy research in clinical context only. Taking into
account the importance of technological aspects for
cytogenetic case reports (i.e. banding resolution (articles
before 1990s), specificity of molecular cytogenetic meth-
ods etc. [31]), it was decided to skip detailed exploration
of case reports on chromosome abnormalities in epilepsy.
Recurrence of associations between chromosomal imbal-
ance or microdeletion/microduplication syndrome and
epilepsy, confirmation of the association, and application
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of cytogenomic techniques (e.g. array CGH or more
advanced techniques) were used as criteria for detailed
analysis. Table 1 summarizes data on chromosomal and
subchromosomal imbalances [32-68], which correspond
to these criteria.

Certainly, the table does not demonstrate the whole
spectrum of recurrent cytogenomic findings in epilepsy.
Still, it gives an overview of the amount of chromosomal
syndromes associated with structural chromosomal
imbalances and epilepsy. Additionally, individuals with
aneuploidy syndromes may exhibit epileptiform activity
from case to case [13, 14]. In this light, one should keep
in mind somatic chromosomal mosaicism, which is able
to change significantly clinical manifestation of chro-
mosomal syndromes or to result into non-syndromic

Table 1 Cytogenomics of epilepsy: chromosomal imbalances
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phenotypes, which, nevertheless, include epilepsy as a
symptom [21, 69-71]. This suggestion becomes even
more intriguing when tissue-specific or brain-specific
mosaicism is proposed as a mechanism for brain dys-
function [14, 70, 71]. Thus, somatic chromosomal mosai-
cism with a special attention to brain-specific mosaics
(structural rearrangements and aneuploidy confined to
the brain) should be considered as a target for forthcom-
ing studies in cytogenomic epileptology.

CNVs are a common type of cytogenomic variations
repeatedly explored in epilepsy. The data on CNVs in
epilepsy is found valuable for gene hunting and assess-
ment of mutational (CNV) burden, which is able to
cause the devastative condition. Usually, large consortia
are focused on these cytogenomic variations to compare

Chromosomal locus/loci Syndrome/Aberration References
1p36 1p36 deletion syndrome [32,33]
1941942 1g41-g42 deletion syndrome [34]
2pl6.1p15 2p16.1-p15 microduplication syndrome [35]
3929 3929 duplication syndrome [35,37]
4p Wolf-Hirschhorn syndrome [38]
50143 5g14.3 Deletion Syndrome [38]
[§ 69 microdeletions [40]
7911.23 Williams-Beuren region duplication syndrome [41]
8021.13-q22.2 8021.13-g22.2 duplication [42]
80243 8q24.3 duplication [43]
9933934 9933-034 microdeletion [44-46]
9g33-g34 microduplication
9934.11 9g34.11 deletions [47]
12922.g23.3 De novo duplication [48]
14g12 Duplications encompassing FOXG1 [49]
14qter Ring chromosome 14 [50, 51]
15911.1-15g13.3 Prader-Willi syndrome [52]
Angelman syndrome [53]
15913.3 159g13.3 microdeletion syndrome [54, 55]
15914 15914 deletion [56]
15024 15g24.1 microdeletion and 15q24.2g24.3 duplication [57]
16p13.11 16p13.11 deletion [58]
17p133 Miller-Dieker Syndrome [59]
17912 1712 duplication (601
18p 18p deletions [61]
19p13.13 19p13.13 deletions [62]
20 Ring chromosome 20 [63]
22g11.2 22q11.2 deletion [64]
224133 22013.3 deletion (65]
Xq13.1 Xq13 duplication [66]
Xp22.13 Mosaic CDKL5 deletion (+ inversion) [67]
Xq28 Microdeletion forms of Rett syndrome [68]




lourov et al. Molecular Cytogenetics (2023) 16:1

specific CNVs or CNV burdens between different patient
groups [10, 72]. As a result, it becomes possible to gen-
erate big data on genomic variability and its association
with variable phenotypes (i.e. cross-disorder dosage
sensitivity of genomic variations) [73]. Unfortunately,
replicability of these studies is poor suggesting further
enlargement of acquired data sets only. Alternatively,
keeping in mind a paradigm of personalized medicine,
which is also applicable to epilepsy [74], one may propose
individual approaches to analyze CNVs in individuals
suffering from epileptic disorders. In fact, a bioinfor-
matic concept of CNVariome might help in narrowing
the outcomes of CNVs in epilepsy. This concept is based
on an idea that the whole set of CNVs in an individual
shape the phenotype. Accordingly, all CNVs detected in a
patient are viewed as a system, where CN'Vs are elements
interacting with each other through ontologies of genes
affected by these cytogenomic variations [75]. Using this
concept, one may uncover molecular and cellular pro-
cesses changed by CNVs in an individual. The applica-
tion of CNVariome concept for studying epilepsy has the
potential to highlight new mechanisms of this devastative
condition.

As one may see from the Table 1, imprinting disorders
are associated with chromosome imbalances (deletions
at 15q11.1-15q13.3) and epilepsy. Indeed, the two best
known imprinting disorders—Angelman and Prader-
Willi syndromes—represent a major focus of genetic
epileptologists [76]. Here, it is noteworthy that runs of
homozygosity or long contiguous stretches of homozy-
gosity spanning shortly the imprinted loci (detectable by
SNP array) are associated with epilepsy in atypical cases
of Angelman or Prader-Willi syndrome [77, 78]. How-
ever, additional research is needed for defining pheno-
typic outcomes of these cytoepigenomic variations.

Another type of cytogenomic variations poorly
addressed in epilepsy is referred to chromosome
(genome) instability. An appreciable number of neu-
rological and psychiatric diseases are associated with
chromosome instability [24]. Moreover, chromosomal
imbalances (deletions, duplications, ring chromosomes)
and CNVs are able to produce chromosomal instabil-
ity in cases demonstrating epileptiform activity [79, 80].
For instance, a specific type of chromosomal inability
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(chromohelkosis or chromosome ulceration/wound)
is relatively common in neurodevelopmental cohorts,
which include individuals with epilepsy (for more details,
see [80]). In addition, it is pertinent to mention that
brain-specific chromosome and genome instability is
a key element of the pathogenetic cascades for several
brain diseases [21, 24]. Consequently, it appears impor-
tant to test postoperative and postmortem samples from
individuals with epileptic disorders in the chromosome
instability context.

Finally, cytogenomic views on epilepsy are incom-
plete without considering small supernumerary marker
(rearranged) chromosomes. Clinical outcomes of these
chromosomal imbalances are highly heterogeneous rang-
ing from normal to severe phenotypes (including epi-
lepsy). Structural variability is supposed to be essential
mechanism for such a phenotypic heterogeneity [81].
Another source for the heterogeneity is mosaicism [82].
Figure 1 demonstrates SNP array analysis of a mosaic
case of supernumerary rearranged chromosome 17 in a
child with epilepsy (Fig. 1). Alternatively, common types
of small supernumerary marker chromosomes may
even cause clinically recognizable syndromes exhibit-
ing epilepsy. Probably, one of the best example of such
syndromes is the inv dup(15) syndrome [83]. Figure 2
depicts fluorescence in situ hybridization (FISH) analysis
of this syndrome in a child suffering from a severe form
of epilepsy (Fig. 2). In total, structural and phenotypic
heterogeneity of small supernumerary marker chromo-
somes requires systematic analysis for the clinical inter-
pretation. Databases may help epileptologists and clinical
geneticists to assess contribution of small supernumer-
ary marker chromosomes to the etiology of epilepsy.
The most detailed information concerning associations
between epilepsy and supernumerary marker chromo-
somes may be acquired using the database of marker
chromosomes managed by Prof. Thomas Liehr (http://
cs-tl.de/DB/CA/sSMC/0-Start.html). In summary, super-
numerary marker chromosomes should be kept in mind
when cytogenomic epileptology studies are performed.

To use cytogenomic data for unraveling mechanisms
of epileptiform activity, specific bioinformatic meth-
ods are required. More precisely, chromosomal abnor-
malities and CNVariome (individual set of CNVs) are
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Fig. 1 SNP array analysis of a derivative chromosome 17 demonstrating the co-occurrence of mosaic and non-mosaic chromosomal
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Fig. 2 Two-color-FISH demonstrating the presence of
supernumerary rearranged (inv dup shaped) chromosome 15 (white
arrow) in a child with epilepsy (DNA probes: SpectrumOrange—
SNRPN + PML; SpectrumGreen—CEP15 or D1571)

to be processed by techniques allowing the analysis of
large gene sets. Fortunately, there are specific methods
for ontology- and pathway-based evaluation of genes
affected by chromosomal imbalances/CNVs based on
data fusion and systems analysis [84—87]. These methods
are effective enough to provide therapeutic opportunities
in patients with chromosomal abnormalities, which are
considered as genetic defects associated with untreatable
conditions [88]. Since genes are essential elements in sys-
tems developed by processing cytogenomic data, it seems
logical to address epilepsy associated genes in the path-
way context.

Epilepsy genes, pathway-based analysis (classification)

and candidate processes

Using a variety of gene hunting strategies, numerous
epilepsy-associated genes have been identified during
the last decades. Then, molecular processes or pathways
implicating these genes have been described [1, 2, 10,
72,73, 89]. Table 2 shows pathways implicating epilepsy-
associated genes or gene families and corresponding
disorders.

From the cytogenomic point of view, one may notice
cytogenetic co-localization of epilepsy-associated genes
from same gene families. This observation is important
for deciphering the role of novel chromosomal rearrange-
ments and large CNVs (>100-150 kb) encompassing
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these loci in the epilepsy etiology. Epilepsy-associated
gene clustering allows us to suggest that intranuclear
interactions between these chromosomal loci through
specific nuclear genome organization exist. In its turn,
such kind of nuclear organization of epilepsy-associated
genes may be involved in regulation/deregulation of the
clusters (discussed hereafter).

Alternatively, looking at epilepsy-associated gene loci
in the disease context (e.g. specific autosomal dominant
epilepsy subtypes), the contrary is observed: variable
localization and implication in molecular pathways of
genes associated with the same type of autosomal domi-
nant epilepsy (Table 3). Thus, we have to recognize the
extended complexity of cytogenomic and “pathwayomic”
parameters of epilepsy-associated genes.

Ontologies of epilepsy-associated genes have been sys-
tematically used for uncovering disease-causing pathways
[1, 2]. On the other hand, participation of these genes in
same gene families and molecular pathways (Table 2) is
used as a successful gene hunting strategy [90]. None-
theless, current knowledge about molecular and cellular
systems, which functioning is mediated by a myriad of
pathways, implies to apply pathway-based classification
for the definition of disease mechanisms [91]. The avail-
ability of bioinformatic tools for solving this task in cases
of gene mutations [92] and chromosomal aberrations
[93] simplifies classifying diseases according to molecular
and cellular pathways. Thus, for uncovering the way from
genomic changes to epileptic phenotype passing through
pathways or metabolic processes, classification issues
should be addressed. Consequently, it is unavoidable to
establish correlations between (cyto)genomic and clinical
(phenotypical) data or to establish genotype—phenotype
correlations.

Classification matters

The essential classification of epilepsy is based on clini-
cal observations (as for the overwhelming majority of
complex diseases). ILAE (International League Against
Epilepsy) classification of the epilepsies is the basic docu-
ment [94]. Clinical and diagnostic practice (including
genetic testing) in epileptology is performed using the
classification. Genetic classification of epilepsy, which is
less official than clinical and is closer to nature, is almost
completely dedicated to monogenic forms/syndromes
[95]. Thus, 977 epilepsy-associated genes were classi-
fied according to the clinical outcomes of the mutations/
variants. Four categories were proposed [96]: (1) gene
mutations causing epilepsy per se or syndromes with epi-
lepsy as the core symptom; (2) gene mutations causing
neurodevelopmental anomalies/malformations resulting
in epilepsy; (3) gene mutations causing gross systemic
abnormalities accompanied by epilepsy; (4) gene variants
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Table 3 Chromosomal loci and genes associated with autosomal dominant lateral temporal lobe epilepsy and autosomal dominant

nocturnal frontal lobe epilepsy

Chromosomal loci Phenotype Disease MIM* Gene/Locus Gene/Locus MIM Gene function

Autosomal dominant lateral temporal lobe epilepsy

3025-g26 Epilepsy, familial temporal lobe, 6 615697 ETL6 - -

4q13.2-921.3 Epilepsy, familial temporal lobe, 3 611630 ETL3 - -

7922.1 Epilepsy, familial temporal lobe, 7 616436 RELN 600514 Neuronal migration

8g13.2 Epilepsy, familial temporal lobe, 54 614417 CPA6 609562 Carboxypeptidase

9g21-g22 Epilepsy, familial temporal lobe, 4 611631 ETL4 - -

10g23.33 Epilepsy, familial temporal lobe, 1 600512 LGl 604619 Glutamate system

11913.2 Epilepsy, familial temporal lobe, 8 616461 GAL 137035 Neuropeptide

12g22-g23.3 Epilepsy, familial temporal lobe, 2 608096 ETL2 - -

Autosomal dominant nocturnal frontal lobe epilepsy

19213 Epilepsy, nocturnal frontal lobe, 3** 605375 CHRNB2 118507 Nicotinic acetylcholine receptor beta-2

subunit

8p21.2 Epilepsy, nocturnal frontal lobe, 610353 CHRNA2 118502 Neuronal nicotinic cholinergic recep-
type 4 tor alpha-2 subunit

9g34.3 Epilepsy nocturnal frontal lobe, 5 615005 KCNTT 608167 Sodium-activated potassium channel

15024 Epilepsy, nocturnal frontal lobe, 603204 ENFL2 - -
type 2

20g13.33 Epilepsy, nocturnal frontal lobe, 1 600513 CHRNA4 118504 Neuronal nicotinic acetylcholine

receptor alpha-4 subunit

" —Mendelian inheritance in Man (https://omim.org/); A—autosomal recessive inheritance is reported, as well; **—autosomal dominant inheritance is uncertain;

of uncertain significance. In summary, it seems that nei-
ther cytogenomic variations nor disease pathways are
the focus for classification of epilepsy. Consequently, we
conclude that a large bioinformatic, clinical and molecu-
lar cytogenetic (cytogenomic) work is required to fill this
gap in epileptology, (cyto)genomic epileptology.

Preliminary cytogenomic analysis of the cohort

To form the cohort for cytogenomic analysis of epilepsy,
we have initially selected individuals from the Russian
neurodevelopmental cohort. Once selected, molecular
karyotyping by array CGH or SNP array analyses has
been performed. Details and cohort description have
been previously presented elsewhere [7, 12, 78, 97-99].
Tables 4 and 5 present the data.

Gross chromosome rearrangements were detected by
cytogenetic analysis in 5 (~2%) out of 300 individuals.
Four cases were confirmed by molecular karyotyping.
Certainly, further analysis of actual and extended cohort
would show additional cases of chromosomal abnormali-
ties associated with epilepsy, which would demonstrate
new pathways implicated in the pathogenesis after bio-
informatic analysis. Additionally, molecular karyotyping
has allowed us the section of 153 CNVs, which might
be implicated in epilepsy pathogenesis in our cohort
(Table 5). Currently, in silico analysis using an original
and established bioinformatic technology [75, 84—87], of
these CNVs is performed.

Although the results of our cytogenetic and cytog-
enomic analysis of the consortium (epilepsy) cohort are
extremely preliminary, we decided to share these data
with the scientific community inasmuch as it helps to
choose future directions in cytogenomic epileptology. It
is to note that non-random sex distribution of chromo-
some-specific CNVs encompassing autosomal genes is
observed. One may hypothesize epilepsy-specific gon-
osome-autosome interactions by non-random genomic
loci, which potentially occur through the specificity of
intranuclear chromsome/genome organization. Current
bioinformatic analyses shows that a significant propor-
tion of CNVs encompasses genes involved in following
pathways: cell cycle regulation, programmed cell death,
DNA reparation and replication. Among others, mTOR,
PI3K-Akt, p53, PTEN, MAPK pathways have been
affected. Since these pathways are associated with brain
disorders including epilepsy and genome stability main-
tenance [24, 100-104], somatic mosaicism and chromo-
some (genome) instability should become an important
focus of cytogenomic epileptology.

Somatic mosaicism and chromosome instability:
neurocytogenetic (neurocytogenomic) aspects

As noted before, somatic mosaicism for gene mutations
is common in epilepsy and seems to play a specific role
in the pathogenesis of epileptic disorders, especially
when affecting brain tissues/brain foci. Genomic analyses
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Table 4 Gross chromosomal aberrations detected in children with epilepsy forming the neurodevelopmental cohort

Chromosomal loci
according to SNP array
data

Chromosome abnormality according to
cytogenetic analysis

Aberration (copy Brief clinical description
number change)

46,XX,add(3)(p26) 3p263

3p26.3p24.3

47 XX, 4+ mar 17p11.2911.1

17p11.2

46,XX,der(11)7add(11)(p13)ins(11)(p13921g23.3) -

46,XX,del(6)(q22.72923.23) 6022.1G23.2

46,XYdel(15)(q11.2q123) 15q11.2g13.1

X 1
X 3

Developmental delay, epilepsy, unsteady gait, devel-
opmental abnormalities: broad flattened face, cleft
palate, short toes, sandal gap, syndactyly of II-Ill toes;
structural heart defect

xX2~3
X3

Developmental delay, epilepsy, biliary dysfunction,
hypertelorism of the palpebral fissures, congenital
clouding of the cornea of the right eye, strabismus,
wide nose, low-lying auricles, ear appendages on
the left; long QT, increase in mobility, volume and
changed parenchyma of the kidneys

- Developmental delay, epilepsy, developmental
abnormalities: up-slanting palpebral fissures epican-
thus, broad nasal bridge, epithelial coccygeal passage;
congenital heart and celiac diseases

x 1 Developmental delay, epilepsy, developmental abnor-
malities: thin sparse hair, narrow face, hypotelorism

of the palpebral fissures, enlarged middle part of the
face, retrognathia, dys-plastic auricles, small teeth,

brachydactyly, thin nails, thoracic kyphosis

x 1 Developmental delay, epilepsy, developmental
abnormalities: flattened face, high forehead, ocular
hypotelorism, high-arched palate, short neck, wobbly

gait

of postoperative samples of the brain in patients suf-
fering from epilepsy have become a common research
practice [19, 20, 105, 106]. Currently, several monogenic
neurodevelopmental disorders exhibiting epilepsy have
been reported to demonstrate brain-specific mosaicism
for gene mutations: focal cortical dysplasia—MTOR
(1p36.22), TSCI (9q34.13), TSC2 (16p13.3), DEPDCS
(22q12.2q12.3) [107-110]; hemimegalencephaly—MTOR
(1p36.22), AKT3 (1q43q44), PIK3CA (3q26.32), RPS6
(9p22.1), AKTI (14932.33) [107, 108, 111, 112]; hypotha-
lamic hamartoma—GLI3 (7p14.1),0FD1 (Xp22.2) [113,
114]; nonlesional focal epilepsy—SLC35A2 (Xpl1.23)
[115];  Sturge-Weber  syndrome  (leptomeningeal
angiomatosis) —GNAQ (9q21.2) [116]; tuberous sclero-
sis 16p13.3—(7'SC2) [117]. As one may observe, mosaic
mutations in these forms of mosaicism affect mTOR and
PI3K-Akt pathways as well as pathways of cell cycle regu-
lation and programmed cell death. Since deregulation of
these pathways leads to chromosome instability in brain
diseases (for review, see [24]), somatic chromosomal
mosaicism and instable genome behavior at the chromo-
somal level are likely to be associated with epilepsy and
are able to be at least elements of the epileptic pathogenic
cascade.

Somatic chromosomal mosaicism and chromosome
instability are common genetic defects detectable in
neurodevelopmental cohorts (i.e. high rates of chromo-
somal mosaicism in children with idiopathic autism and

intellectual disability with congenital anomalies and
epilepsy) [118, 119]. Moreover, somatic mosaicism may
initiate instability, which rates are variable and correlate
with phenotypic dynamics (increase in rates of mosai-
cism/instability — worsening; decrease in rates of mosai-
cism/instability — improvement)  [121-123].  Finally,
somatic chromosomal mosaicism and chromosome/
genome instability represent an important part of patho-
genetic cascades of a wide spectrum of brain disorders,
including neurobehavioral, neurodevelopmental, psy-
chiatric, neurological and neurodegenerative conditions
[21-25, 124-129]. Thus, cytogenomic research of chro-
mosomal variations in the brain (neurocytogenetic or
neurocytogenomic analyses) of individuals with epilepsy
has the potential to bring new insights into understand-
ing the etiology.

Genome and chromosome instability in the brain is
mainly generated in early ontogeny. The developing
human brain is significantly affected by chromosome
instability (up to 35% of cells) [130—132]. Normally, cel-
lular population affected by chromosome instability
diminishes due to neuronal cell death [133, 134]. During
later ontogenetic periods genome/chromosome instabil-
ity in the brain is generally the result of genetic-environ-
mental interactions (i.e. environmental triggers produce
a genomically instable cellular population, which is ini-
tially susceptible to the instability due to mutational bur-
den altering genome safeguarding pathways) [24, 135].
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Table 5 CNVs detected in children with epilepsy forming the neurodevelopmental cohort

Genetic sex Copy number Chromosome locus (loci)
Chromosome X
XX %3 Xp22.13
X3 Xq27.3
x3 Xq28
x 1 Xq23
x2~3 X026.2926.3
x3 Xq22.1
x 0 Xp11.23
XY x2 Xq28
x 2 Xp22.13
x 2 Xq21.1
x 0 Xqg21.1
X2 Xp22.31
x 2 Xp114
x 2 Xq27.3
x 2 Xp11.23
x 2 Xq12
Chromosome Y
XY X 2 Yg11.223
x 2 Yq11.223q11.23
x0 Yq11.23
Chromosome 1
XY x 1 1g42.13
x 1 1p31.1
x 1 1p22.1
x 1 1p132
XX %3 1p36.32
x4 1p31.3
x3 1p213
x 1 1p21.1
Chromosome 2
XX x4 2922.1
XY X1 2g37.1
x 1 2924.3931.1
2G243
x 1 2g31.1
X3 2p12
Chromosome 3
XY x3 3p25.3
x 1 3pl4.
x4 3929
XX x3 3p26.3
XX x 1 3p26.2
x 1 3p14.2
x 1 3023
x4 302633
Chromosome 4

XX x3 4q34.3
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Genetic sex Copy number Chromosome locus (loci)

XY x4 4921.21
x3 4q313
x 1 402122

Chromosome 5

XX x3 5q13.3
x 1 5022.2
%3 5p13.2
x 1 5q13.2
x 1 5033.1

Chromosome 6

XX x 1 6p11.2
x 1 6025.3

XY X3 6026

Chromosome 7

XY x 1 7p123
x3 7p21.1
x3 7p13
x 1 7021.2

XX x3 7p22.3p21.2
x 1 79323
x 1 791121
x 4 7g21.11
x 1 7031.1
x 1 7G22.1

Chromosome 8

XY x 3 8p23.3
x 1 89122
x 1 8p21.3
x 1 8p21.2
x 4 8g21.13
x 1 8p23.1
x 1 8q12.1

Chromosome 9

XY x 1 99343

XX x 1 99343
x 4 9g21.31
x 4 99332
x 1 9g34.13
x 3 9934.12
x2~3 9p24.3p24.2
x 3 9p24.3
x 1 9p24.3p23
x 1 9p23
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Table 5 (continued)

Genetic sex Copy number Chromosome locus (loci)

Chromosome 10

XY X3 10924.32
x4 10g24.32
x3 109241
x 4 10g25.2
x4 10p12.31
x4 10926.3
x 1 10g25.1
x4 10p153
x3 10g24.2

Chromosome 11

XY x 1 11p15.5
x 1 11p13
x4 11p12

XX x 1 11p154
x 1 119223
x3 119223
x4 11p13
x3 119131
x3 11q12.1

Chromosome 12

XX x 1 12924.13
X 3 12p13.31
x 1 12p12.1
x 1 12g13.12

XY x 1 12913.13
x3 12p13.31
x 1 12g24.31
x 1 12p12.2

Chromosome 13

XY x 1 13912.12

XX x 1 139333
X 3 13g14.11
x 1 13933.3g34

Chromosome 14

XY x 1 14924.1
x 1 14g21.3

Chromosome 15

XX x 1 150213
x 1 150263
x 1 15q15.3
x 1 15021.1

XY x 1 15g15.1
x 1 15G21.3
x 1 15022.2
x3 15026.3

x 1 15q11.2
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Table 5 (continued)
Genetic sex Copy number Chromosome locus (loci)
Chromosome 16
XY x 1 16p133
x 1 16g23.2
XX x3 16p13.3
x 1 16p13.3
x 1 16p11.2
x3 160243
x 1 16p13.12
x 1 16023.1
x 1 160233
x 1 160243
Chromosome 17
XY x3 17p133
x 1 17g21.1
x2~3 17p13.2p12
x 4 17p13.2p13.1
x3 17p13.1
x3 17p11.2
x 1 17p13.2
XX x3 17p133
x 1 17921.31
x 1 17g21.1
Chromosome 18
XX x3 18q12.1
x3 180212
Chromosome 19
XY x 1 19p133
X 3 19p13.11
XX x 1 199132
x 1 19g13.33
X 3 19913.41
x3 19p13.12
Chromosome 22
XY x 4 229132
x2~3 22q11.1g11.22
X 3 22g11.21
x 3 2291333
x2~3 22q11.1g11.23
XY x3 22q11.21

These neurocytogenetic observations allow suggesting
that studies in cytogenomic epileptology require not only
analysis and monitoring of chromosome instability, but
also a sophisticated evaluation of genome susceptibility
to the instability. If successful, neurocytogenetic (neuro-
cytogenomic) studies are able to lead the way to develop-
ing diagnostic approaches for suggesting the presence of
brain-specific epilepsy-associated genome instability (for

details, see [136]) and therapeutic approaches targeted
toward inhibition of brain-specific chromosome instabil-
ity [137].

The most enigmatic area of neurocytogenetics or neu-
rocytogenomics is nuclear genome organization at chro-
mosomal level in brain diseases. It is important to note
that epilepsy was the first disease, in which chromo-
some behavior was studied in the affected brain [138].
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Unfortunately, no additional efforts in this direction
were made. In fact, neurocytogenetic analysis of nuclear
organization in the unaffected and diseased brain has
never been systematically performed. Current molecu-
lar cytogenetics and cytogenomics possess technologi-
cal possibilities to perform high-resolution analysis of
chromosomal arrangements and rearrangements in post-
mitotic cells of the human brain [139-142]. The analy-
sis of brain-specific chromosomal nuclear organization
appears even more attractive taking into account that
spatial positioning of chromosomes determines behav-
ior and stability of the nuclear genome in an interphase
nucleus [140, 142, 143]. In the light of cytogenomic epi-
leptology, studying chromosomal nuclear organization in
postoperative brain samples of individuals with epilepsy
might bring new important insights into our understand-
ing of molecular and cellular processes leading to focal
brain dysfunction.

Conclusions

Theoretical work of our consortium has allowed us to
make some important conclusions, which underlie future
directions in cytogenomic epileptology:

+ Cytogenomic variations require more profound
research in epileptic disorders.

+ More detailed bioinformatic analyses (e.g. applica-
tion of CNVariome concept and systems analysis)
of epilepsy-associated genes are needed in cases of
chromosomal abnormalities and CNVs.

+ Neurocytogenetic (neurocytogenomic) studies of
chromosomal variation and instability in postopera-
tive samples are warranted in patients suffering from
epileptic disorders.

+ Cytoepigenomic  variations (long  contiguous
stretches of homozygosity spanning shortly the
imprinted loci) should not be left aside in large-scale
studies in epilepsy genetics.

+ Supernumerary marker chromosomes are an impor-
tant target for studies in cytogenomic epileptology.

+ Extended complexity of cytogenomic (non-random
gene co-localization and clusterization) and “path-
wayomic” parameters of epilepsy-associated genes as
well as behavior of chromosomal loci in interphase
should be a focus of cytogenomic studies in epilep-
tology.

+ Genotype—phenotype correlations are an important
part of cytogenomic studies in epileptology.

+ Cytogenomic pathway-based classification of epilep-
tic disorders seems to be useful for basic and practi-
cal research of epilepsy.

+ Pathways (e.g. mTOR, PI3K-Akt, p53, PTEN, and
MAPK) altered in epilepsy and associated with chro-
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mosome and genome instability require profound
exploration.

+ Somatic chromosomal mosaicism is a target for
future studies in cytogenomic epileptology.

+ Studies of chromosomal nuclear organization in
postoperative brain samples of individuals with epi-
lepsy appear to become an innovative and perspec-
tive area of biomedical research.

+ The consortium focused on studying cytogenomic
(cytogenetic and molecular cytogenetic) aspects of
epilepsy has the potential to bring new insights in
current epileptology.

Chromosomal abnormalities and CNVs represent an
important, albeit poorly explored, genetic causes of epi-
lepsy [13, 14, 21]. The problem of lacking cytogenetic and
cytogenomic studies of epilepsy is likely to arise from
general decrease in cytogenetic competence [144]. It has
been systematically reported that ignoring chromosomal
approaches to solving genomic biomedical problems lead
to incomplete understanding of mechanisms for genetic
diseases [144—146]. The formation of our consortium is
basically aimed at incorporating cytogenomic variations
to the complemented view of genetic causes of epilepsy.
We have preferred to use the term “cytogenomic” for
designating the consortium in its initial and established
meaning [147]. Despite the fair discussions about the
term of cytogenomics [148], our consortium is defini-
tively a cytogenomic one, inasmuch as it is focused on
studying genome of individuals suffering from epilepsy
by molecular cytogenetic and genomic technologies in
the chromosomal context. Thus, we concluded the des-
ignation “consortium on cytogenomic epilptology” to be
appropriate.
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were chromosomal abnormalities in brain disorders and
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