
CASE REPORT Open Access

Does ICSI for in vitro fertilization cause
more aneuploid embryos?
Xiangli Niu1, Jiamin Long1, Fangqiang Gong1 and Weihua Wang2*

Abstract

Background: High proportion of human embryos produced by in vitro fertilization (IVF) is aneuploidy. Many factors
are related to the prevalence of embryonic aneuploidies, such as maternal age, sperm quality, and in vitro
manipulation of oocytes. Oocytes are usually inseminated by intracytoplasmic sperm injection (ICSI) procedures for
preimplantation genetic testing. There is still no available information whether insemination procedures, regular IVF
or ICSI, affect embryonic aneuploidies.

Methods: In this case report, a patient at her age of 47 years old received donated oocytes from a young donor for
infertility treatment. Half of oocytes were inseminated by regular IVF and other half of oocytes were inseminated by
ICSI. Fertilized oocytes were cultured to blastocyst stage and then biopsied for preimplantation genetic testing for
aneuploidies (PGT-A). The proportions of aneuploidies were compared between two insemination procedures.

Results: Forty-seven oocytes were retrieved, 23 were inseminated by regular IVF and 24 were removed from
enclosed cumulus cells for ICSI. Out of 24 oocytes, 21 oocytes at metaphase II were inseminated by ICSI. After
fertilization assessment, it was found that 12 oocytes from regular IVF fertilized normally. Nine blastocysts (75%)
were biopsied and 1 (11.1%) was aneuploidy. By contrast, 19 out of 21 oocytes inseminated by ICSI fertilized
normally, 14 blastocysts (73.7%) were obtained and 7 (50.0%) were aneuploidy. Transfer of a euploid blastocyst from
regular IVF resulted in a healthy baby delivery.

Conclusion: These results indicate that more embryos produced by ICSI are aneuploidy as compared with embryos
produced by regular IVF. The results indicate that in vitro manipulation of oocytes for ICSI procedure may have
adverse effect on human oocytes, and it may be one of the reasons causing aneuploid embryos in human IVF.
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Background
Preimplantation genetic testing for aneuploidies (PGT-
A) has been widely applied in human in vitro
fertilization (IVF), and has been one of embryo selection
approaches apart from embryo morphology and time-
lapse culture with morphokinetic embryo selection [1–
7]. However, high proportion of human embryos pro-
duced by IVF is aneuploidy that cannot be revealed by
morphological assessment and morphokinetic embryo

selection, thus PGT-A is considered as a valuable pro-
cedure to screen embryos’ genetic status [1–5]. With
PGT-A procedure, euploid embryos can be selected to
transfer, which eventually can increase embryo implant-
ation and reduce repeated implantation failures and
birth defects [8–10].
Current PGT-A technology includes blastocyst biopsy

and chromosomal screening by next generation sequen-
cing (NGS) of whole chromosomes that can provide ac-
curate chromosomal information including chromosomal
number, chromosomal deletion and duplications [11–13].
Embryo biopsy at the blastocyst stage is a critical step to
obtain samples for accurate chromosomal testing. For this
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purpose, oocyte insemination by intracytoplasmic sperm
injection (ICSI) has been recommended as contamination
by cumulus cells and/or sperm during regular IVF can be
avoided [14].
Maternal age is one of the important factors affecting

embryonic aneuploidy [15–27]. However, it has been
found that aneuploidy rate in human IVF is quite high
even when oocytes are collected from young patients or
from young oocyte donors [15, 18–31]. The reasons for
such high aneuploidy rates have not been addressed
completely. Because most human aneuploid embryos are
originated from oocytes [23, 32] and maternal age is an
unquestionably factor to contribute to high aneuploidy
rate in human embryos [15–19, 24]. Recently, a study re-
ported that embryo aneuploidy rates from oocyte donor
cycles are related to IVF laboratories [33]. Therefore,
there must be other factors, except maternal ages, are
related to embryo aneuploidy. One of the factors may be
insemination procedures because oocyte second meiosis
occurs during oocyte fertilization. Disruption of a nor-
mal meiosis can cause chromosomal errors during mei-
osis and eventually result in embryonic aneuploidy
formation [23, 32, 34–36].
In the present case report, a patient received IVF treat-

ment with donor oocytes with half of oocytes being in-
seminated by regular IVF and other half of oocytes being
inseminated by ICSI. We found that different aneuploidy
rates were present between two insemination proce-
dures, thus we report this case and the information may
be meaningful for physicians and clinical embryologists.

Methods
Donor stimulation for oocyte retrieval
The oocyte donor (34 years old) underwent controlled
ovarian stimulation for 11 days with a combination of
daily injection of 150 IU recombinant follicle-stimulating
hormone (Gonal-F, EMD Serono, MA, USA) and 150 IU
of a combination of follicle stimulating hormone and
luteinizing hormone (Menopur, Ferring Pharmaceuticals,
NJ, USA). On day 7, 0.25 mg gonadotropin releasing
hormone antagonist (Cetrotide, EMD Serono) was given
daily until triggering for oocyte maturation by 4 mg
gonadotropin-releasing hormone agonist (Lupron) on
Day 12 and 13. Oocytes were retrieved at 36 h after the
first Lupron and then cultured in Global™Total medium
at 37 °C in an atmosphere of 5.5% CO2, 6% O2, and bal-
anced N2 under humidified conditions.

Oocyte insemination by ICSI and regular IVF
For ICSI, cumulus cells were removed by using hyal-
uronidase (Fujifilm-Irvine Scientific, CA, USA) at 4 h
after oocyte retrieval and metaphase II oocytes were
injected 5 h after retrieval. For regular IVF, oocyte-
cumulus complexes were inseminated directly in the

organ culture dishes with 135,000 motile sperm/ml at 5
h after retrieval.

Assessment of fertilization, embryo quality and blastocyst
biopsy
Fertilization was assessed 18 h after insemination, and
normal fertilization was characterized by two distinct
pronuclei and two polar bodies. Embryo quality was
evaluated by an inverted microscope on days 3, 5 and 6.
Blastocysts at days 5 and 6 were biopsied using a modi-
fied inner zona biopsy method. Briefly, after holding the
blastocyst to a proper position, a small hole in the zona
was opened by the ZILOS-tk™ laser system (Hamilton
Thorn Bioscience Inc., MA, USA) and a 20 μm polished
biopsy pipette (Sunlight Medical, Jacksonville, FL, USA)
was inserted inside zona through this hole. A few troph-
ectoderm cells (5–10 cells) were aspirated into biopsy
pipette inside the zona and then pull the pipette out of
the zona. After assisted cutting (one or two pulses) with
laser at the edge of the front opening of biopsy pipette, a
fast mechanical friction between holding pipette and bi-
opsy pipette was used to separate the cells from blasto-
cyst. The biopsied cells were collected in PCR tubes and
stored at − 20 °C freezer until processing for NGS. All
blastocysts were cryopreserved for later frozen embryo
transfer (FET).

Chromosome analysis in the blastocysts
Biopsied samples were analyzed by a commercial genetic
testing company (Invitea, San Francisco, CA, USA) using
Illumina platform with a FAST-SeqS next generation of
sequencing method and associated bioinformatics pipe-
line validated for accurate detection of whole chromo-
some number, segmental (≥10Mb) aneuploidy,
polyploidy and UPiD (chromosomes 1–16. 18, and X).

Blastocyst vitrification, warming and transfer to recipient
The biopsied blastocysts were vitrified using a vitrifica-
tion device and kit (Fujifilm-Irvine Scientific). Both
equilibration solution and vitrification solution were
warmed in original vials at 37 °C for at least 30 min be-
fore use. Briefly, collapsed blastocysts by a laser pulse
were equilibrated in 100 μl drop of equilibration solution
for 2 min, and then 45 s in 100 μl drop of vitrification so-
lution (both steps were performed on a 37 °C warming
stage) before loading to vitrification device. All blasto-
cysts were vitrified individually and then stored in liquid
nitrogen until warming for FET.
For warming, blastocyst was exposed to a thawing solu-

tion (Fujifilm-Irvine warming kit) at 37 °C for 1min, trans-
ferred to a dilution solution for 3 min and finally to a
washing solution for 10min with a solution change after
5min at room temperature. After completion of the
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warming process, blastocyst was cultured in Global™Total
medium for 2 h before transfer.
For preparation of embryo transfer, the patient re-

ceived 2 mg estradiol (Estrace, Warner Chilcott, NJ,
USA) vaginally, 0.1 mg estradiol patch (Estradiol Trans-
dermal System, Noven Pharmaceuticals, NJ, USA) every
3 days, and 400 mg progesterone (Cyclogest), twice a
day, was administered on 15th day of estradiol treat-
ment. The blastocyst was transferred on the sixth day of
progesterone administered and progesterone was contin-
ued daily until the first serum β-hCG test 2 weeks after
transfer. Ongoing pregnancy was supported by contin-
ued estradiol and progesterone until 11 weeks of preg-
nancy. Pregnancy was initially confirmed 14 days after
embryo transfer by a serum β-hCG assay. Four weeks
after embryo transfer, when a gestational sac and a
heartbeat appeared, the patient was diagnosed as having
a clinical pregnancy. The patient was then monitored by
an obstetrician until childbirth.

Case presentation
A 45 years old patient and her 44 years old male partner
had 5 years infertility treatment with 10 previous failed
IVF cycles. The male partner had normal semen analysis
results (4 ml semen with 109 x106sperm/ml and 41%
motility). The patients decided to use donor oocytes for
coming IVF treatment. Forty-seven oocytes were re-
trieved from an oocyte donor. Twenty three oocytes
were inseminated by regular IVF and 21 oocytes at
metaphase II (out of 24 oocytes) were inseminated by
ICSI. As shown in Table 1, 16 oocytes inseminated by
regular IVF and 19 oocytes inseminated by ICSI fertil-
ized normally to form 2 pronuclei. All fertilized oocytes
cleaved at Day 3 examination, and 9 and 14 blastocysts
were obtained from regular IVF and ICSI, respectively.
After PGT-A, it was found that 1 out of 9 blastocysts
from regular IVF was aneuploid. However, 7 out of 14
blastocysts from ICSI were aneuploid.
The details of chromosomal status and embryo quality

of each blastocyst were shown in Table 2. It would ap-
pear that there is no relationship between embryo qual-
ity and chromosomal status of embryos. For example, 9
good blastocysts (both inner cell mass and trophecto-
derm) and 6 fare blastocysts (either inner cell mass or
trophectoderm) were euploid while 6 good blastocysts
and 2 fare blastocysts were aneuploid.

After transfer of one euploid blastocyst (#1 embryo)
resulting from regular IVF, the blastocyst implanted and
a healthy girl (weight 3266 g) was delivered at gestation
of 40 weeks and 5 days by cesarean section.

Discussion
Application of PGT-A in human IVF has been increased
significantly in recent few years and the benefits of
PGT-A is to transfer euploid embryos that can increase
embryo implantation and reduce birth defects. The rea-
son for use of PGT-A is that high proportions of human
embryos produced by IVF are aneuploidy that was found
not only in patients with advanced maternal age [16,
20–22, 25, 37], but also in young patients [15, 28–30] or
patients with donated oocytes for IVF [19, 31].
The origin of embryonic aneuploidies mainly is from

oocytes by chromosomal errors during meiosis I and/or
meiosis II [32, 34, 35]. Usually errors in meiosis I occur
in in vivo during oocyte maturation, but errors during
meiosis II occur during insemination in vitro [23, 32,
35]. Therefore, in vitro manipulation of oocyte and/or
in vitro conditions may affect oocyte meiosis II. For
PGT-A, oocytes are usually inseminated by ICSI, not by
regular IVF, thus ICSI procedures (cumulus removal and
ICSI procedure itself) increase more opportunities for
oocytes to be exposed to sup-optimal conditions. The
purpose for use of ICSI for PGT-A is to assure that cu-
mulus cells around oocytes have been removed and only
one sperm is used for insemination, so that there are
limited cumulus cells attached to zona pellucida and no
sperm around the oocyte, which can reduce the contam-
ination of cumulus cells and/or sperm for more accurate
genetic testing.
As a standard procedure for ICSI, cumulus cells need

to be removed before ICSI and oocytes are inseminated
after the oocytes are exposed to air under a controlled
temperature conditions. Although ICSI has been used in
human IVF for more than 30 years and live birth after
ICSI and regular IVF did not show any differences [38,
39]. Very little information is available whether ICSI
procedure can cause more oocytes to form aneuploid
embryos because regular IVF is not used to inseminate
oocytes if PGT-A is applied to the resulting embryos. In
the present study, our case report, for the first time, in-
dicates that ICSI procedures can cause more embryos to
form aneuploidy as compared with regular IVF. The

Table 1 Fertilization and embryo development after regular IVF and ICSI

Insemination
method

No. of
oocytes

Oocytes
at M-IIa

Fertilization No. of
blastocysts

No. of
aneuploidy0PN 3PN 2PN

Regular IVF 23 NA 5 2 16 (69.6%) 9 (56.2%) 1 (11.1%)

ICSI 24 21 2 0 19 (90.5%) 14 (73.7%) 7 (50.0%)
aM-II metaphase II, PN Pronuclei
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reason for this may be due to oocytes’ meiosis II process
being exposed to a suboptimal in vitro conditions.
Temperature fluctuation is one of most critical factors

affecting meiotic spindle organization which has been
found in many mammals [40–45], and human oocytes are
especially sensitive to temperature fluctuations [45]. It has
been found that meiotic spindle in human oocyte depoly-
merized after the temperature dropped to 35 °C and spin-
dles can recover after oocytes were returned to 37 °C, but
limited recovery was also found in some oocytes [46–51].
Recently, it has also been reported that embryonic an-

euploidy rates varied between physicians in same IVF la-
boratory and also varied among different clinics when
oocytes were collected from young, healthy donors [33].
The reasons for these differences are unknown. Because
many factors exist during IVF treatment, such as patient
stimulation protocols, donor differences, different la-
boratory set up, laboratory environmental differences,
and embryologist’s skill to perform ICSI. Our data from
the present case may suggest that manipulation of oo-
cytes in vitro including ICSI procedure itself may affect
meiosis II, which eventually affect embryonic aneuploidy
formation.

In the present case report, we used a new blastocyst bi-
opsy method in which blastocysts were biopsied inside the
zona pellucida. This method can be used to avoid any
contamination of cumulus cells and sperm during regular
IVF. Therefore, for insemination of oocytes in patients for
PGT-A, it is not necessary to use ICSI procedures. We
have used this new method to perform blastocyst biopsy
during the past few years and found it is an easy to use bi-
opsy procedure. The times for embryos to be exposed to
air and the time for biopsy can be reduced by this method,
and we also found that limited laser cutting is required
during biopsy and excessive laser cutting application may
damage embryos and biopsied cells.
Embryo morphology does not exactly represent

chromosomal status in the embryos, which has been re-
ported by use of different morphological assessments, in-
cluding simple embryo morphological assessment or
recently developed time-lapse morphokinetic embryo se-
lection [51–53]. That is the reason that PGT-A is still
the most valuable method to screen chromosomal status
in human embryos [54–59], while embryo biopsy for
PGT is one of the most challenged procedures in an IVF
laboratory.

Table 2 Quality and chromosomal status of blastocysts from regular IVF and ICSI

Embryo # Insemination method Chromosomal Status Blastocyst qualitya Embryo status

1 Regular IVF 46, XX Good/Good Transferred

2 Regular IVF 46, XX Good/Good Frozen

3 Regular IVF 46, XX Good/Good Frozen

4 Regular IVF 46, XX Fare/Good Frozen

5 Regular IVF 46, XY Good/ Fare Frozen

6 Regular IVF 46, XY Good/Good Frozen

7 Regular IVF 46, XY Fare /Good Frozen

8 Regular IVF 46, XY Good/Good Frozen

9 Regular IVF 47, XY, +16 Good/ Fare Frozen

10 ICSI 46, XX Good/Good Frozen

11 ICSI 46, XX Good/Good Frozen

12 ICSI 46, XX Fare /Good Frozen

13 ICSI 46, XY Fare /Good Frozen

14 ICSI 46, XY Good/Good Frozen

15 ICSI 46, XY Good/Good Frozen

16 ICSI 46, XY Fare /Good Frozen

17 ICSI 45, XY,-16 Good/Good Frozen

18 ICSI 48, XY, +3, +4 Good/Good Frozen

19 ICSI 47, XY, +22 Good/Good Frozen

20 ICSI 47, XX, +3 Good/Good Frozen

21 ICSI 46, XY, del(7) (q32q34) Good/Good Frozen

22 ICSI 46, XY, del(3) (q21) Fare /Good Frozen

23 ICSI 46, XY, dup(7)(p11.2p22) Good/Good Frozen
aInner cell mass/trophectoderm
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Although we manipulate human oocytes for ICSI
under a well-controlled temperature and other condi-
tions, it would appear that these conditions are not the
optimal conditions for human oocytes. Further improve-
ment is still necessary to avoid adverse effects on oocytes
during in vitro manipulation of oocytes for ICSI.
Previous studies have examined cytogenetic results of

spontaneous abortions following IVF and ICSI but the
results were contradictory [60–62]. Lathi and Milki
found that significantly higher aneuploidy rate in the
abortuses of patients who conceived with ICSI than that
with IVF [60], while other studies did not find the differ-
ence between regular IVF and ICSI [61, 62]. The differ-
ent results from these studies may be resulted from
sample collection. Many factors in these studies, such as
the proportions of miscarriage out of total clinical preg-
nancy, were not known. Furthermore, only one sample
was collected from each patient, so the chromosomal
status in other embryos that have not been transferred
in the same patients were not known either. While in
the present case report, we analyzed all embryos pro-
duced by either regular IVF or ICSI from single oocyte
retrieval cycle, thus the differences between patients, or
between cycles were avoided, which makes the results to
be more reliable.

Conclusion
The present case report indicates that more human em-
bryos produced by ICSI are aneuploidy as compared
with the embryos produced by regular IVF. The higher
aneuploidy rate may be related to in vitro manipulation
of oocytes for ICSI including cumulus cell removal, ICSI
procedure itself and/or temperature fluctuations during
the processing. These processes may be suboptimal con-
ditions for oocytes to undergo meiosis, therefore further
improvement of in vitro conditions for ICSI procedure
may be necessary. In addition, blastocyst biopsy can be
performed inside zona pellucida to avoid contamination
of cumulus cells and/or sperm for chromosomal analyses
of biopsied cells, thus oocytes for PGT can be insemi-
nated by regular IVF if semen analysis shows a normal
sperm number, motility and morphology. Further com-
parison of aneuploidy rate in human embryos produced
by regular IVF and ICSI remains necessary.
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