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Abstract

Background: Chromosome 14q11-q22 deletion syndrome (OMIM 613457) is a rare genomic disorder. The
phenotype heterogeneity depends on the deletion size, breakpoints and genes deleted. Critical genes like FOXG1,
NKX2–1, PAX9 were identified.

Case presentation: We performed whole exome sequencing (WES) and copy number variation sequencing (CNV-
seq) for a patient with mild speech and motor developmental delay, short stature, recurrent pulmonary infections,
tooth agenesis and triad of brain-lung-thyroid syndrome. By using CNV-seq, we identified a 3.1 Mb de novo
interstitial deletion of the 14q13.2q21.1 region encompassing 17 OMIM genes including NKX2–1, PAX9 and NFKBIA.
Our patient’s phenotype is consistent with other published 14q13 deletion patients.

Conclusion: Our results showed the combination of WES and CNV-seq is an effective diagnostic strategy for
patients with genetic or genomic disorders. After reviewing published patients, we also proposed a new critical
region for 14q13 deletion syndrome with is a more benign disorder compared to 14q11-q22 deletion syndrome.
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Background
Chromosome 14q11-q22 deletion syndrome (OMIM
613457) is a genomic disorder characterized by micro-
cephaly, dysmorphic facies, psychomotor delay and
failure to thrive. The associated phenotype is hetero-
geneous, depending on the size and variable breakpoints
[1–3]. Some major features can be explained by haploin-
sufficiency of critical genes like FOXG1, NKX2–1, PAX9,
etc. [4, 5]. Patients with interstitial deletions involving
14q13.1q21.1 are rarely reported and all these patients had
similar features. NKX2–1 and PAX9 in 14q13 are

considered to be the critical genes causing brain-lung-
thyroid syndrome (BLTS, OMIM 610978) and tooth agen-
esis (OMIM 604625) features, respectively [6, 7]. More
recently, NFKBIA was purposed to be responsible for
immunodeficiency these patients [8].
In our study, we report a new patient with

14q13.1q21.1 distal microdeletion syndrome. Copy num-
ber variation sequencing (CNV-seq) revealed a de novo
3.10Mb sized deletion (chr14: 35,268,524–38,367,321).
We detailed described this patient’s phenotype and
reviewed all reported patients with similar breakpoints
encompassing NFKBIA, NKX2–1 and PAX9, and pro-
vided more information of relationships between clinical
features and deleted genes.

Case presentation
The patient is a 15-year-old female born to nonconsan-
guineous parents by nature labor after full-term gesta-
tion. Family history is unremarkable. She was diagnosed
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as aspiration pneumonia at birth and stayed in hospital
for 4 days. Developmental delay was noticed after birth.
She could not sit until 12 months. She could speak after
24 months and walk after 27 months. Dysarthria and
ataxia were also unnoticed since after. At the age of 2
years, she went to hospital for speech and motor deve-
lopmental delay. The symptoms were relieved after re-
habilitation training. She was also diagnosed as short
stature when she was 14 and received growth hormone
therapy for 9 months. Her height increased from 132 cm
(− 4.7 SD) to 142 cm (− 3.2 SD), resulting in an annual
growth velocity of 13 cm.
At the age of 15 years, she was referred to the Depart-

ment of Respiration, Beijing Children’s Hospital for con-
tinuous cough and expectoration for 3 years. Her height
and weight were below 3rd percentile. She did not have
obvious facial anomalies but hypohidrosis and tooth
agenesis (missing secondary dentition including molars
and premolars) were noticed (Fig. 1a-c). She also had
punctate pigmentation was noticed on her back. Mental
development was delayed compared to peer children.
Immune system examination revealed decreased IgG
(3.69 g/L), other immunoglobulins and lymphocyte
subsets were normal. Paranasal sinusitis and anemia
were diagnosed. She had increased thyroid-stimulating

hormone (TSH, 11.983 mIU/L), deceased triiodothyronine
(T3, 58.79 ng/dL) and normal tetraiodothyronine (T4,
4.81 μg/dL), indicating a compensated hypothyroidism.
She also had delayed development of the secondary
sexual characters. Till this visit, she did not have
menarche when she was 15. Her bone age was also
delayed (BA = 10).
Thoracic computed tomography (CT) revealed inter-

stitial and parenchymal lesions and bronchiectasis in
both lungs, dominated with interstitial lesions, and
mucus plugs was found in right upper lobe and left
lower lobe (Fig. 1d). Ultrasonography of knee joint
showed very limited amount of effusion in bilateral
suprapatellar capsule. Routine blood test, coagulation
function, and screening for infectious diseases, abdo-
minal ultrasonography, ultrasonic cardiography, cranial
CT and paranasal sinus CT were all normal.
DNA was isolated from peripheral blood samples ob-

tained from the proband and her parents by using Gen-
tra Puregene Blood Kit (QIAGEN, Hilden, Germany).
200 ng genomic DNA of each individual was sheared by
Biorupter (Diagenode, Belgium) to acquire 150~200 bp
fragments. The ends of DNA fragment were repaired
and Illumina Adaptor was added (Fast Library Prep Kit,
iGeneTech, Beijing, China). After sequencing library

Fig. 1 Phenotype of the patient. a-b This patient did not have characteristic facial feathers of 14q11-q22 deletion syndrome. c The patient had
normal primary dentition and agenesis of permanent teeth. d Thoracic CT showed interstitial and parenchymal lesions and bronchiectasis in both
lungs (red arrow)
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were constructed, the whole exome was captured with
AIExome Enrichment Kit V1 (iGeneTech, Beijing,
China) and sequenced on Illumina NovaSeq 6000 (Illu-
mina, San Diego, CA) with with 150 base paired-end
reads. Raw reads were filtered to remove low quality
reads by using FastQC. Clean reads were mapped to the
reference genome GRCh37. Single nucleotide variants
(SNVs) were annotated and filtered by TGex (http://app.
genecards.cn) and classified following the American Col-
lege of Medical Genetics and Genomics and the Associ-
ation for Molecular Pathology interpretation standards
and guidelines [9]. To identify large copy number
variations (CNVs), part of the sequencing library was
sequenced directly on Illumina NovaSeq 6000 and each
sample yielded one Gigabase Raw data. An in-house
pipeline was applied to map and call CNVs and the
health parents were used as control samples [10]. Clean
reads were mapped to the reference genome GRCh37.
Database of Genomic Variants, DECIPHER database,
ClinVar, OMIM and ClinGen were used for interpret-
ation and classification of the clinical significance of can-
didate CNVs according to previously reported guidelines
[11]. By whole exome sequencing (WES), 30,636 SNVs
and small indels were called from 14,549.59Mb Clean
bases (Target mean depth was 122.23X) in the proband.
After analysis and interpretation, none of these variants
could explain the proband’s phenotype. However, CNV-
seq revealed a de novo 3.1 Mb deletion on 14q13.1q21.1
(chr14: 35,268,524–38,367,321) (Fig. 2). The deletion en-
compasses 17 OMIM genes including BAZ1A, SRP54,
PPP2R3C, KIAA0391, PSMA6, NFKBIA, INSM2, RAL-
GAPA1, PTCSC3, MBIP, SFTA3, NKX2–1, NKX2–8,
PAX9, SLC25A21, MIPOL1 and FOXA1. The deletion

was not present in the parents. WES reads depth data
was used to validate this deletion (log2 = − 1.00428,
mean depth = 50.02X, probes number = 379). Informed
consent was obtained from the parents of the patient.

Discussion and conclusions
In this study, we described clinical and molecular find-
ings in a female with mild speech and motor develop-
mental delay, short stature, recurrent pulmonary
infections, tooth agenesis and triad of BLTS. Using
CNV-seq, we identified a 3.1Mb de novo interstitial
deletion of the 14q13.2q21.1 region encompassing 17
OMIM genes.
The prevalence of chromosome 14q11-q22 deletion

syndrome is lower than 1 in 1,000,000 infancies. The
phenotype of patients is largely determined by the dele-
tion size and breakpoints. Several candidate genes were
well identified like FOXG1, NKX2–1 and PAX9. Dele-
tions including FOXG1 and a 1Mb upstream region on
14q12 cause severe intellectual disability [5, 12–16].
NKX2–1 (14q13.3) deletion is responsible for chor-
eoathetosis, hypothyroidism, short stature and neonatal
respiratory distress and haploinsufficiency of PAX9
(14q13.3) causes oligodontia phenotype [5, 17–21]. The
role of other genes is still under evaluation. NPAS3
(14q13.1) encodes a transcription factor localized to the
nucleus and may regulate genes involved in neurogen-
esis. Npas3−/− mice had abnormal neurodevelopment,
neurosignaling and behavior [22], making it a candidate
gene of holoprosencephaly (HPE) and hypoplasia of the
corpus callosum (ACC) in 14q11-q22 deletion syndrome
patients [5, 23]. RALGAPA1 (14q13.2) encodes a major
subunit of the RAL-GTPase activating protein, and was

Fig. 2 A de novo 3.1 Mb deletion on 14q13.1q21.1 was identified in the patient. The deletion encompasses 17 OMIM genes and the pLI
(probability of LoF intolerant) value of each gene is shown in colors. The deletion shown is detected by CNV-seq
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suggested to be important in brain development [24].
NFKBIA (14q13.2) mutation cause dominant inherited
ectodermal dysplasia and immunodeficiency 2 (EDAID2,
OMIM 612132) and may be the explanations of patients’
immunological features [4, 8]. SEC23A (14q21.1) en-
codes a subunit of a protein complex and found in
the ribosome-free transitional face of the endoplasmic
reticulum and associated vesicle and it is considered
as a candidate gene of joint hyperlaxity [8, 17]. Mice
with knock-out had abnormal cartilage development
and collagen level [25]. Biallelic SEC23A mutation
causes craniolenticulosutural dysplasia (OMIM
607812). It is characterized by facial dysmorphism,
late-closing fontanels, cataract, and skeletal defects in-
cluding joint laxity [26].
The deletion region of our patient (chr14: 35,268,524–

38,367,321) encompasses RALGAPA1 and NFKBIA but
no NPAS3 or SEC23A. Consequently, joint laxity, HPE
or ACC was not observed in our patient. Epilepsy was
also absent in our patient even though RALGAPA1 was
deleted. We reviewed published ten patients with pheno-
type description and similar deletion regions encompass-
ing RALGAPA1, the deleted sizes ranged from 0.82Mb
to 6.98Mb, and only one patient with 1.99Mb deletion
reported by Caliebe A et al. had seizures [4, 5, 8, 19, 23,
27–29]. Therefore, deletion of RALGAPA1 was not suffi-
cient to cause seizures and the genotype-phenotype cor-
relation of RALGAPA1 deletion remained unclear.
Considering our patient had decreased IgG, paranasal si-
nusitis and recurrent infections, we also reviewed im-
munological features of seven patients with NFKBIA
deletion (two patients were collected from DECIPHER
database, Fig. 3). Patient reported by Villafuerte B et al.
also had low IgG but also relatively low lymphocyte
count and percentage of switched B cells [8]. Gentile M
patient also had recurrent infections, with a mild reduc-
tion of CD3/CD8 lymphocytes and an elevation of CD4/

CD8 ratio, yet her IgA, IgG, and IgM were normal [4].
Santen G patient 5 and Peall K patient 4 had recurrent
lower respiratory infections [5, 19]. Patient 256,879 from
DECIPHER database also had recurrent infections. We
next reviewed seven patients with PAX9, NKX2–1 dele-
tion and leaving NFKBIA intact in previously literature.
The deleted sizes ranged from 0.36Mb to 3.69Mb, and
only one male with 2.34Mb had recurrent bronchitises
[5, 17, 19, 20, 29]. It was notable that the pLI (probabil-
ity of LoF intolerant) value of NFKBIA was 1, and the o/
e score is 0 (0–0.19), indicating deletion of this gene
may have serious clinical consequences. In addition,
three NFKBIA nonsense variants were reported in pa-
tients with EDAID2 [30]. To this respect, NFKBIA hap-
loinsufficiency may be an appropriate explanation of the
immunological features of 14q13 deletion patients.
Our patient, together with previously reported pa-

tients, identified a well-defined, more benign, 14q13 dis-
tal microdeletion syndrome. The major phenotype
includes choreoathetosis, tooth agenesis, pulmonary dys-
function, immunological abnormal and hypothyroidism.
The 1.4 Mb critical region contained at least three candi-
date genes: NFKBIA, NKX2–1 and PAX9 (Fig. 3). In this
region, one more gene, PSMA6, with its pLI being 1 and
o/e score being 0 (0–0.23), should be more attention.
PSMA6 encodes the component of the 20S core prote-
asome complex involved in the proteolytic degradation
of most intracellular proteins. Variants in PSMA6 were
reported to be associated with inflammation diseases like
myocardial infarction [31], arthritis [32, 33], etc. Given
its essential function and intolerant of LoF variants in
population, more subtle features may be uncovered in
the future.
Previous researches have demonstrated that CNV oc-

curred in 5–10% of the total human genome [34], and
chromosomal microarray analysis (CMA), as a stable
and accurate platform, is used for detecting. Currently,

Fig. 3 Schematic representation of the chromosomal region deleted of our patient (blue) and other similar deletions at 14q13.2-q21 described in
the previously reported literature (green) and DECIPHER database (black). Three critical genes were located in the overlapping region
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CNV-seq is developed by analyzing data generated from
WES or whole genome sequencing (WGS) [35–37]. Re-
cent studies showed that the combination of WES and
CNV-seq by low cover genome sequencing increased
diagnostic yield in patients with rare diseases [38, 39]. In
our study, after suspecting the diagnosis of BLTS of our
patient, we performed trio-WES and low coverage WGS
(0.3X) simultaneously. No putative pathogenic variants
in NKX2–1 was identified, but we uncovered a 3.1Mb
deletion encompassing NKX2–1, as well as PAX9 and
NFKBIA. Notably, WES data could be applied to CNV
identification, so we used WES data to validate this dele-
tion. By reviewing our deleted region and other reported
patients, we proposed a 1.4Mb critical region for 14q13
distal microdeletion syndrome with a well-defined, more
benign phenotype compared to 14q11-q22 deletion syn-
drome. Our results further demonstrated the clinical
utility of the diagnostic strategy combining WES and
CNV-seq for genetic diseases patients.
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