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Abstract

Background: Conventional cytogenetic analysis using G-band karyotyping has been the method of choice for
prenatal diagnosis, accurately detecting chromosomal abnormalities larger than 5 Mb. However, the method is
inefficient for detecting the submicroscopic deletions and duplications that are associated with malformations and
mental retardation. This study evaluated the results of the multiplex ligation-dependent probe amplification (MLPA)
P245 assay used for prenatal diagnosis in cases with unusual ultrasonographic findings or specifically where parents
wanted to be tested. The objective was to compare the results from MLPA with those from conventional
cytogenetic testing in order to determine their concordance and the additional diagnostic yield of MLPA over G-
band karyotyping.

Results: Of the 7522 prenatal cases analyzed, 124 were found to have genomic imbalances (1.6%). Of those 124
cases, 41 had gene loss (33.6%), and 83 had gene gain (66.4%). Most of the cases with genomic imbalances (64.5%)
showed no abnormal karyotype. In particular, all cases with a 4p16.3 deletion (Wolf-Hirschhorn syndrome) showed
an abnormal karyotype, whereas all of those with a 22q11–13 deletion showed a normal karyotype. In most of the
cases with pathogenic deletions, the indication for invasive prenatal testing was an increase in the nuchal
translucency (NT) alone (51.2%). Other indications observed in the remaining cases were abnormal serum screening
markers (14.6%), other ultrasonographic findings (9.8%), pregnancy through in vitro fertilization and fertility
assistance (9.8%), and advanced maternal age(2.4%).

Conclusions: These results show that for fetuses with an enlarged NT or abnormal ultrasonographic findings and
normal conventional karyotype, additional genetic investigation like molecular testing would be for identifying the
microscopic genomic aberrations (microdeletions, microduplications) responsible for syndromic associations
including structural anomalies and mental retardation.
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Background
Cytogenetic analysis of fetal cells after chorionic villus
sampling or amniocentesis is routinely offered to women
who have an increased risk of carrying chromosomally
abnormal fetuses. The indications for such prenatal diag-
noses include advanced maternal age, increased risk for
fetal trisomy identified by maternal serum screening,
and fetal abnormalities detected through ultrasonog-
raphy (USG). In the late first trimester of pregnancy, nu-
chal translucency (NT) is visible at the back of the neck
in all fetuses, where an increased NT is often associated
with chromosomal anomalies, especially Down syn-
drome [1, 2]. If the karyotype is normal but the NT is
increased, the fetus has an increased risk of a wide range
of congenital malformations, from isolated structural de-
fects to genetic syndromes and neurodevelopmental de-
lays to larger dilemmas of congenital anomalies [3–8].
The conventional cytogenetic test using G-band karyo-

typing has been the method of choice for prenatal diag-
nosis, accurately detecting chromosomal abnormalities
larger than 5Mb [9, 10]. However, it is inefficient for de-
tecting the sub-microscopic deletions and duplications
that are often associated with malformations and mental
retardation. Multiplex ligation-dependent probe amplifi-
cation (MLPA) can examine the subtle abnormalities
that cannot be detected by conventional G-band karyo-
typing [11–14].
This study presents an overview of the results obtained

from use of the MLPA P245 assay for prenatal diagnosis
in cases with an unusual USG or in specific cases where
parents wanted to be tested. The results from MLPA were
compared with those from conventional cytogenetic test-
ing in order to determine their concordance and the add-
itional diagnostic yield of MLPA over G-band karyotyping.

Results
Of the 7522 prenatal cases, 124 were found to have genomic
imbalances (1.6%). Of those 124 cases, 41 were found to have
gene loss (33.6%), whereas 83 cases had gene gain (66.4%)
(Tables 1, 2, 3, and 4). Table 1 summarizes the indications
for invasive prenatal diagnosis.

Most of the cases with genomic imbalances (64.5%) did
not show an abnormal karyotype (Tables 2 and 3). In par-
ticular, all cases with a 4p16.3 deletion (Wolf-Hirschhorn
syndrome) showed an abnormal karyotype, whereas those
with 22q11–13 deletion showed a normal karyotype
(Table 2).
In most of the cases with pathogenic deletions, the in-

dication for invasive prenatal testing was an increased
NT alone (51.2%); Other indications observed in the
remaining cases were abnormal serum screening
markers (14.6%), other findings from USG (9.8%), preg-
nancy through IVF and fertility assistance (9.8%), and
advanced maternal age (2.4%) (Table 1). FISH results
were available for 38 of 55 cases with pathogenic imbal-
ances (data not shown).

Discussion
Conventional cytogenetics has been the gold standard in
prenatal diagnosis for detecting chromosomal abnormal-
ities. At the light microscope level, the genome-wide nu-
merical and structural anomalies can be examined and
the resolution of chromosomal abnormalities of 5–10
Mb can be obtained [9, 10]. Indications for such prenatal
diagnoses include advanced maternal age, increased risk
for fetal trisomy identified by maternal serum screening,
and fetal abnormalities (e.g., increased NT) detected
through USG. There is much evidence that measure-
ment of the NT alone or as part of a combined test is an
excellent screening method for fetal aneuploidies, and
an increased fetal NT with a normal karyotype is associ-
ated with an increased risk of adverse pregnancy out-
comes [3–8].
Euploid fetuses with an increased NT may present

with structural anomalies, including cardiac defects, dia-
phragmatic hernias, exomphalos, body stalk anomalies,
and skeletal defects;, where certain genetic syndromes,
(e.g., congenital adrenal hyperplasia, fetal akinesia, or
Noonan syndrome), have been cited as possible causes.
These present a huge dilemma in prenatal counseling. In
particular, the 22q11.2 deletion syndrome (also known
as DiGeorge or velocardiofacial syndrome) is the most
common, with a reported prevalence ranging from 1 in
2000 – to 1 in 6000 live births. The frequency appears
to exceed 1 in 1000 in referrals for prenatal diagnosis,
even when cases with ultrasonographic evidence for fetal
abnormalities are excluded. After Down syndrome,
22q11.2 deletion syndrome is the second most common
cause of congenital heart disease and is an important
consideration whenever a conotruncal cardiac anomaly
is identified, in particular Tetralogy of Fallot. Additional
developmental disabilities are often also present [15–17].
In this study, we present our experience of using the

MLPA P245 assay during invasive prenatal diagnosis in
7522 selected cases with abnormal ultrasonographic findings

Table 1 Distribution of indications for genomic imbalances

Indications Gene loss N (%) Gene gain N (%)

Increased NT 21 (51.2%) 34 (41%)

Serum screening(+) 6 (14.6%) 19 (22.9%)

Abnormal finding (USG) 4 (9.8%) 4 (4.8%)

Family history 2 (4.9%) 12 (14.5%)

Advanced maternal age 1 (2.4%) 7 (8.4%)

IVF & fertility assistance 4 (9.8%) 7 (8.4%)

Total 41 83

[NT Nuchal Translucency, IVF in vitro fertilization, USG ultrasonography.] *
When collecting indications, we were instructed to check only one item
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or parents wanting to be tested. As a result, 124 cases were
found to have genomic imbalances with 41 cases having
gene loss (33.6%), and 83 having gene gain (66.4%) (Ta-
bles 2, and 3). The 22q11.2 deletion syndrome (39%)
showed the highest frequency of 2.1 cases per 1000,
and all had a normal karyotype (Tables 1, and 2). Con-
versely, all cases of 4p deletion (19.5%) were accompan-
ied by chromosomal structural abnormality, and the same
was true for the cases with a 5p deletion (9.8%) except for
only one case. Indications were almost increased NT or
ultrasonographic findings (Table 2). Most of the cases
were found to have fetal malformations, but almost all of
them had normal karyotypes. Thus, whereas deletions are
clearly associated with clinical significance or genetic dis-
ease, in the cases of duplication, the clinical relevance still
remains unclear (Tables 3), [18–22].
Five partial deletions of 22q (one deletion of the three

probes) were detected (Tables 1, 2, and 3). MLPA ana-
lysis using parental DNA showed that one of the dele-
tions was of maternal origin and two were of paternal
origin, and they were expected to be consistent with the
parent’s phenotype [23]. The other parents did not wish
to tested. All cases were confirmed by the FISH method
to be normal. FISH has been the gold-standard method
for the diagnosis of microdeletion syndrome, but current

FISH probes may not be able to detect all 22q11.2 dele-
tions in the critical region; thus, it is possible that some
cases that appeared to be false positive were in fact true
positive [15–17].
As a consequence, in prenatal genetic counseling, cli-

nicians faced with abnormal ultrasonographic finding,
but normal karyotyping, find it difficult to predict the
outcomes, and to offer proper genetic counseling and
clinical management. Furthermore, the anxiety of pro-
spective parents increases while they wait for the re-
sults of more highly informative testing [24–26]. In this
study we used the MLPA P245 assay for our invasive
prenatal chromosome test for a number of reasons.
MLPA allows for a more comprehensive determination
of gene dosages, with increased convenience and a rela-
tively low cost compared with subtelomeric FISH ana-
lysis and other molecular methods. Moreover, MLPA
can be used to detect micro-deletions that may not be
identified by FISH, and it is more accurate for describ-
ing the karyotype owing to its delicate probe spacing.
Therefore, the combined use of karyotype analysis and
MLPA P245 in prenatal diagnosis facilitates greater ac-
curacy and more informative results than those ob-
tained from use of conventional cytogenetic methods
only [27–34].

Table 2 Detailed clinical data and karyotype results at the loss of genome

Deletion region Karyotype result

1p36.33 1 (2.4%) 46,XY,der(1)t(1;9)(p36.3;q34.3)mat,

2q23.1 1 (2.4%) 46,XY

4p16.3 (Wolf-Hirschhorn syndrome) 8 (19.5%) 46,XX,der(4)t(4;18)(p15.3;q11.2)mat

46,XX,der(4)t(4;6)(p12;q25)

46,XX,der(4)t(4;18)(p15.3;q11.2)mat

46,XX,del(4)(p14)

46,XX,del(4)(p16.1)

46,XX,add(4)(p15.2?)

46,XY,der(4)t(4;21)(p16.1;q22.2)pat

46,XX,del(4)(p15.2)

5p15(Cri du chat syndrome) 4 (9.8%) 46,XX,r(5)(?p15.5?q3

46,XX,del(5)(p13)

46,XX

46,XY,der(5)t(5;6)(p13.3;p21.3)mat

5q35.3(Sotos syndrome) 3 (7.3%) 46,XX or 46,XY

15q11.2(Prader willi syndrome) 1 (2.4%) mos 45,X [12]/46,X,Yq

16p13.3(Rubinstein-Taybi syndrome) 2 (4.9%) 46,XX or 46,XY

22q deletion 21 (51.2%) 22q11.21(DiGeorge syndrome) 16 (39%) 46,XX or 46,XY

22q11.21 partial deletion 4 (9.8%) 46,XX,t(5;17)(q31.1;p13.3)

46,XX or 46,XY

22q13 partial deletion 1 (2.4%) 46,XY,t(17;18)(p13.3;q21.1)pat

Total 41
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Table 3 Detailed clinical data and karyotype results at the gain of genome

Duplication region N(%) Karyotype results

1p36.33 3 (3.6%) 46,XX or 46,XY

3q29 13 (15.7%) 46,XX or 46,XY

mos 45,X [14]/46,X,+mar [12]

47,X,Yqh+,+ 21

46,XX,der(10)t(3;10)(q21;p13)mat

46,XY,add(8)(p21.3)

mos 47,XY,15 ps+,+ 20 [14]/46,XY,15 ps + [36]

46,XY,der(4)(pter→q?33::p?15.2→ pter)

46,XX,der(21)t(4;21)(p16.1;q22.2)pat

46,XX,+ 4,der(4)t(4;13)(q21.3;q12.3)pat.-13

5p15 2 (2.4%) 46,XY

46,XY,t(4;5)(q25;p14.3)mat

7q11.23 3 (3.6%) 47,XX,+ 7

46,XX

mos 47,XY,+ 7 [39]/46,XY [11]

8q24 3 (3.6%) 47,XX,+der(14)t(8;14

46,XY,der(20)t(8;20)(q23;p13)mat

mos 47,XX,+ 8 [22]/46,XX [15]

9q22.3 2 (2.4%) 46,XY,der(9)inv.(9)(p12q13)t(9;13)(p22;q32)

47,XX,+ 9

10p14 3 (3.6%) 46,XX,9qh+

47,XX,+ 18

mos 47,XY,+ 10 [43]/46,XY [3]

15q11.2 6 (7.2%)

15q11.2 4 46,XX or 46,XY

15q24 2 46,XY

46,XX,der(7)t(7;15)(q36.3;q15)

16p13.3 5 (6.0%) mos 47,XY,+ 16 [24]/46,XY [7]

46,XX or 46,XY

47,XX,+ 16

17p13.3 4 (4.8%) 46,XX,t(2;8)(q35;q22)mat

46,XX or 46,XY

17q21.31 1 (1.2%) 46,XY

22q 33 (39.8%)

22q11 15 (18.0%) 46,XX or 46.XY

mos 47,XX,+ 7 [30]/46,XX [20]

46,XY,1qh+,der(9)t(9;18)(p24;q21.3)pat

47,XY,+der(22)t(13;22)(q34.1;q11.2)mat

22q13 18 (21.7%) 46,XX or 46,XY

47,XX,+der(22)t(20;22)(p13;q11.2)mat

47,XY,+ 22

47,XY,+ 18

46,XY,der(15)t(15;22)(q26.1;q13.3)mat

47,XX,+der(22)t(11;22)(q23.3;q11.2)mat

Lee et al. Molecular Cytogenetics           (2019) 12:10 Page 4 of 6



Conclusions
In conclusion, for fetuses with an enlarged NT or abnor-
mal USG and normal conventional karyotype, additional
genetic investigations like molecular testing would be
beneficial for identifying the microscopic genomic aber-
rations (microdeletions, microduplications) responsible
for syndromic associations including structural anomal-
ies and mental retardation.

Methods
Patients and samples
All samples from the 7522 pregnant Korean women en-
rolled in this study were received at the Research Center
of Fertility & Genetics of Hamchoon Women’s Clinic be-
tween April 2010 and December 2017, for prenatal diag-
nosis using G-band karyotyping and the MLPA P245
assay. Details of the analyzed tissues are given in
Table 4.

Diagnostic techniques
Conventional chromosome analysis was performed on
chorionic villi in accordance with the standard proce-
dures used for evaluating numerical and structural
chromosome aberrations in direct cytotrophoblastic cells
preparations and long-term cultures of mesenchymal tis-
sue (GTG-banding, 550 band level). Chromosome ana-
lysis using amniotic fluid and fetal blood was also
performed according to standard protocols.
Genomic DNA for MLPA was extracted from

T25-flask-cultured fetal cells using a QIAamp DNA kit
(Qiagen, Hilden, Germany). The MLPA assay used to
screen microdeletion syndromes was performed using
the SALSA P245 probemix (MRC-Holland, Amsterdam,

Netherlands) according to the manufacturer’s instruc-
tions. The amplification products were identified and
quantified by capillary electrophoresis using a 3130 XL
genetic analyzer (Applied Biosystems, Foster City, CA,
USA). The data were analyzed with Gene Marker 1.85
software (SoftGenetics, State College, PA, USA).
Fluorescent in situ hybridization (FISH) was used to

assess the structure of the disparity imbalance suspected
of being pathogenic in the sample. FISH was performed
on metaphase spreads on slides according to the manu-
facturer’s hybridization protocols.

Abbreviations
FISH: Fluorescent in situ hybridization; MLPA: Multiplex ligation-dependent
probe amplification; NT: Nuchal translucency; USG: Ultrasonography
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