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Abstract

Background: Certain rare syndromes with developmental delay or intellectual disability caused by genomic copy
number variants (CNVs), either deletions or duplications, are associated with higher rates of obesity. Current strategies
to diagnose these syndromes typically rely on phenotype-driven investigation. However, the strong phenotypic overlap
between syndromic forms of obesity poses challenges to accurate diagnosis, and many different individual cytogenetic
and molecular approaches may be required. Multiplex ligation-dependent probe amplification (MLPA) enables the
simultaneous analysis of multiple targeted loci in a single test, and serves as an important screening tool for large
cohorts of patients in whom deletions and duplications involving specific loci are suspected. Our aim was to design
a synthetic probe set for MLPA analysis to investigate in a cohort of 338 patients with syndromic obesity deletions
and duplications in genomic regions that can cause this phenotype.

Results: We identified 18 patients harboring copy number imbalances; 18 deletions and 5 duplications. The alterations
in ten patients were delineated by chromosomal microarrays, and in the remaining cases by additional MLPA probes
incorporated into commercial kits. Nine patients showed deletions in regions of known microdeletion syndromes with
obesity as a clinical feature: in 2q37 (4 cases), 9q34 (1 case) and 17p11.2 (4 cases). Four patients harbored CNVs in the
DiGeorge syndrome locus at 22q11.2. Two other patients had deletions within the 22q11.2 ‘distal’ locus associated with
a variable clinical phenotype and obesity in some individuals. The other three patients had a recurrent CNV of one of
three susceptibility loci: at 1q21.1 ‘distal’, 16p11.2 ‘distal’, and 16p11.2 ‘proximal’.

Conclusions: Our study demonstrates the utility of an MLPA-based first line screening test to the evaluation of obese
patients presenting with syndromic features. The overall detection rate with the synthetic MLPA probe set was about
5.3% (18 out of 338). Our experience leads us to suggest that MLPA could serve as an effective alternative first line
screening test to chromosomal microarrays for diagnosis of syndromic obesity, allowing for a number of loci (e.g.,
1p36, 2p25, 2q37, 6q16, 9q34, 11p14, 16p11.2, 17p11.2), known to be clinically relevant for this patient population,
to be interrogated simultaneously.
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Background
Obesity is defined as an abnormal or excessive fat accumu-
lation that presents a risk to health, and is commonly clas-
sified using the body mass index (BMI =weight/height2). It
is well established that single-gene defects or genomic copy
number variants (CNVs), either deletions or duplications,
can lead to both syndromic and non-syndromic forms
of obesity [1]. The term syndromic obesity refers to rare
or uncommon genetic syndromes, in which obesity is
one of a range of symptoms, often including developmen-
tal delay (DD) and intellectual deficit (ID). Prader-Willi
syndrome (PWS; OMIM 176270) is the most common
known genetic cause of obesity, resulting more frequently
from a deletion in the paternal 15q11.2-q13 chromosomal
region. The diagnosis is typically made in early infancy
due to hypotonia and poor feeding, prior to the onset
of obesity and hyperphagia [2].
Several other clinically well-defined microdeletion syn-

dromes also have an increased prevalence of obesity, but
they are often clinically difficult to diagnose due to exten-
sive phenotypic overlap and lack of a diagnostic testing
path. Examples are 1p36 monosomy (OMIM 607872),
brachydactyly-mental retardation (BDMR) syndrome
(OMIM 600430), 6q16 deletion syndrome (OMIM 603128),
Kleefstra syndrome (KS; OMIM 610253), Wilms tumor,
aniridia, genitourinary anomalies, and mental retardation
(WAGR) syndrome (OMIM 194072, 612469), and Smith-
Magenis syndrome (SMS; OMIM 182290). Some of these
syndromes have now been explained by haploinsufficiency
of a single gene in the critical deletion intervals, including
BDMR (HDAC4) [3], KS (EHMT1) [4], and SMS (RAI1)
[3-5]. In addition, the obesity phenotype in patients with
6q16 deletion is likely explained by haploinsufficiency
of the transcription factor single-minded 1 (SIM1) gene
[6], whereas obesity susceptibility in WAGR syndrome
mainly depends on haploinsufficiency for the brain-derived
neurotrophic factor (BDNF) gene [7].
Since in recent years chromosomal microarray analysis

(CMA) has become the method of choice for detecting
copy number imbalances in the genome, a great number
of rare CNVs and microdeletion/duplication syndromes
have been found that cause, or predispose to, obesity along
with DD/ID and other phenotypic findings, such as 1p21.3
microdeletions [8], 2p25.3 deletions [9,10], interstitial dele-
tions within 6q14.1q15 [11], 6q22 deletions [12], transloca-
tion der(8)t(8;12)(p23.1;p13.31) [13], interstitial deletions on
11p14.1 [14], 12q subtelomeric deletions [15], 16p11.2 dis-
tal and proximal deletion [16,17], 17q24.2 microdeletions
[18], chromosome 19q duplications [19], and several others
[20-22]. Multiplex ligation-dependent probe amplification
(MLPA) is more cost and time-efficient than microarray-
based approaches, and provides an alternate method of
simultaneously determining copy number status at multiple
target loci. In this study, we have designed a synthetic probe
set to interrogate the copy number status at previously de-
scribed loci associated with syndromic obesity, and defined
the length of the lost or gained DNA regions by SNP-array
and/or oligoarray-CGH or, alternatively, using commercial
MLPA kits. We report our findings from screening in a
cohort of 338 patients with syndromic obesity.

Results
Results are shown in Table 1. Copy number imbalances
were detected in 18 patients (diagnostic yield of 5.3%);
18 deletions and 5 duplications. The alterations in ten
cases were confirmed (delineated) by SNP-array (patients
2 and 18) and oligoarray-CGH (patients 1, 3–8, 17), while
the alterations in eight cases were fine-mapped using
the commercial MLPA kits P064-B2 (patients 9–12) and
P023-B (patients 13–16), with more probes in sequences
adjacent to the genes in which copy number gains or
losses were detected.
Patient 1 had duplication for two gene probes from

1q21.1, PRKAB2 and ACP6 (Figure 1A). The duplication
was shown to have a size of ~1.8 Mb with breakpoints in
segmental duplication (SD), or low-copy repeat (LCR),
blocks BP3 (distally) and BP4 (proximally), located in
the distal 1q21.1 region (as delimitated by CMA). Four
patients were deleted for probes mapped to the 2q37.3
locus: patients 2–4 had deletion for probes HDAC4 and
GPR35 (Figure 1B), and patient 5 had a deletion for probe
GPR35 (Figure 1C); no deletion of the region detected by
probe HDAC4 was observed in the latter case. The CMA
results showed an additional ~1.7 Mb duplication adjacent
and proximal to the deletion of patient 2, and a concur-
rent 17q25.3 duplication of ~2.3 Mb in patient 5. Present
deletions vary in size from ~2.2 Mb to 6.2 Mb. Patient 6
had a deletion for the 9q34.3 probe EHMT1 (Figure 1D).
Subsequent CMA demonstrated a submicroscopic dele-
tion of ~0.4 Mb extending from EHMT1 (exon 17) to the
most distal gene CACNA1B. Two patients were found
with CNVs at the 16p11.2 locus: patient 7 had a deletion
for the most distal probe SH2B1 (Figure 2E), and patient 8
had duplication for the most proximal probes CDIPT and
MAPK3 (Figure 2F). Testing of parental DNAs showed
that the deletion occurred apparently de novo, while the
duplication was inherited from the normal father. CMA
confirmed that the deletion in patient 7 is confined to the
distal 16p11.2 region flanked by SD blocks BP2 and BP3,
and the duplication in patient 8 to the proximal 16p11.2
region flanked by SD blocks BP4 and BP5.
Deletion in 17p11.2 probe RAI1 has been found in pa-

tients 9–12 (Figure 2G), and in all of these patients dele-
tion within the FLCN gene, which is reference probe in
the P200 and P300 MLPA kits, mapped to chromosome
17p11.2, has been detected (data not shown). The P064-
B2 MLPA kit used in this study includes five probes spe-
cific for sequences in the SMS 17p11.2 region, with the



Table 1 Chromosomal aberrations detected primarily by the MLPA testing panels

Case Cytoband CNV
type

Aberrant
MLPA probe(s)

CMA/ MLPA Genomic
coordinates

Size
(Mb)

Inheritance Phenotype

P1 1q21.1 Gain PRKAB2, ACP6 180 K
oligoarray

chr1:146.07-
147.83 Mb

1.8 n.d. 6.8 yr old male (BMI >95th), speech delay (>2 yr), macrocephaly
(>98th), accelerated growth (90-95th), genital hypoplasia

P2 2q37.1q37.2 Gain – 500 K SNP
array

chr2:235.09-
236.8 Mb

1.7 – 11 yr old male (BMI >95th), DD (walked: 3.6 yr, spoke: 3 yr); ID,
hypotonia, motor and speech
impairment, hyperphagia, seizures, macrocephaly (98th),
facial dysmorphisms, inverted nipples, unilateral cryptorchidism2q37.2q37.3 Loss HDAC4, GPR35 chr2:236.94-

243.01 Mb
6.1 de novo

P3 2q37.2q37.3 Loss HDAC4, GPR35 60 K oligoarray chr2:236.85-
243.0 Mb

6.2 n.d. 21 yr old male; DD, hypotonia, hyperphagia, obesity, absent speech, mild
dysmorphisms, supernumerary teeth, unilateral cryptorchidism, micropenis

P4 2q37.2q37.3 Loss HDAC4, GPR35 60 K oligoarray chr2:237.22-
243.0 Mb

5.8 de novo 8 yr old female (BMI >95th), DD (walked: 17mo, spoke: >2 yr), learning disability,
dolichocephaly, facial dysmorphisms, mamilar hypertelorism, inverted nipples,
brachydactyly, 2–3 toe syndactyly, hirsutism, joint hypermobility

P5 2q37.3 Loss GPR35 180 K
oligoarray

chr2:240.88-
243.03 Mb

2.2 n.d. 5 yr old female (BMI >95th), DD (walked: 2 yr, spoke: 3 yr), ID, behavior
problems, prominent ear, thin elongated eyebrow, strabismus

17q25.3 Gain – chr17:78.77-
81.06 Mb

2.3

P6 9q34.3 Loss EHMT1 60 K oligoarray chr9:140.67-
141.02 Mb

0.4 de novo 9.5 yr old female (BMI >95th), DD (walked: 18mo, spoke: 6 yr), hypotonia,
hyperphagia, behavior problems, tall stature (>97th)

P7 16p11.2 Loss SH2B1 180 K and 60 K
oligoarray

chr16:28.82-
29.04 Mb

0.2 de novo 7 yr old female (BMI >95th), GDD, hypotonia, ADHD, hyperphagia, speech
impairment, deep-set eyes, straight eyebrows, thick earlobe

P8 16p11.2 Gain CDIPT, MAPK3 180 K and 60 K
oligoarray

chr16:29.65-
30.19 Mb

0.5 paternal 8.5 yr old male, GDD, hyperphagia, obesity [sic], speech impairment, behavior
problems, scoliosis

P9 17p11.2 Loss FLCN,1 RAI1 P064 kit chr17:17.13-
19.29 Mb

2.2 de novo 11 yr old male (BMI >95th), DD, ID, hyperphagia, behavior and sleep problems,
macrocephaly (>98th), typical facial dysmorphisms, brachydactyly, 2–3 toe syndactyly,
micropenis

P10 17p11.2 Loss FLCN,1 RAI1 P064 kit chr17:16.85-
19.29 Mb

2.4 de novo 10 yr old male (BMI >95th), DD, ID, hypotonia, hyperphagia, behavior and sleep
problems, speech and hearing impairment, facial dysmorphism

P11 17p11.2 Loss FLCN,1 RAI1 P064 kit chr17:16.85-
19.29 Mb

2.4 de novo 7 yr old female (BMI >95th), DD (walked: 2 yr, spoke: 5 yr), ID, behavior problems,
myopia, strabismus, astigmatisms, hypoplasia genital, 2–3 toe syndactyly

P12 17p11.2 Loss FLCN,1 RAI1 P064 kit chr17:16.85-
19.29 Mb

2.4 n.d. 6.8 yr old male (BMI >95th), DD (walked: 5 yr, spoke: >4 yr), hypotonia, hyperphagia,
compulsive behavior, typical facial dysmorphisms

P13 22q11.21 Loss CRKL P023 kit chr22:19.32-
21.35 Mb

2.0 de novo 3 yr old male (weight >97th), GDD, absent speech, hypotonia, mild facial
dysmorphism

P14 22q11.21 Loss CRKL P023 kit chr22:19.32-
21.35 Mb

2.0 de novo 9 yr old male (BMI >95th), ID, hypotonia, speech delay (>3 yr), behavior problems,
ADHD, hyperphagia, accelerated growth (90-95th), hypogonadism

P15 22q11.21 Loss CRKL P023 kit chr22:19.32-
21.35 Mb

2.0 paternal 13mo old male (BMI 76th), DD, hypotonia, growth delay (3rd-5th), relative overweight
(weight to height ratio >75th percentile), dolichocephaly, facial dysmorphisms

P16 22q11.21 Gain CRKL P023 kit chr22:19.32-
21.35 Mb

2.0 paternal 8.6 yr old male (weight >97th), DD (walked: >2 yr), mild ID, hypotonia, facial
dysmorphisms, widened mediastinum, brachydactyly, micropenis
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Table 1 Chromosomal aberra ons detected primarily by the MLPA testing panels (Continued)

P17 22q11.22q11.23 Loss R 36 180 K
oligoarray

chr22:23.01-
23.65 Mb

0.6 maternal 2.8 yr old female (BMI 85th), hypotonia, non-ambulatory and non-verbal, epilepsy
(onset at 3mo), brachycephaly, deep-set eyes, visual impairment, joint laxity

P18 22q11.22q11.23 Loss R 36 500 K SNP
array

chr22:23.06-
23.7 Mb

0.6 n.d.2 15 yr old male (BMI >95th), GDD, ID, hypotonia, absent speech, behavioral and
sleep problems, facial dysmorphisms, strabismus, hyperprolactinemia, micropenis

Breakpoints based on the coordinates the first and last altered array probes. The alterations of patients 9–12 and 13–16 were fine-mapped by additional MLPA probes in the commercial kits P064-B2 and P023-B,
respectively. Probes in the MLPA kit P0 -B2 covering the 17p11.2 region are TNFRSF13B, LRRC48, LLGL1, PRPSAP2 and MFAP4. Probes in the MLPA kit P023-B covering the 22q11 region are IL17R, BID, HIRA, CLDN5,
KIAA1652, KLHL22, PCQAP, SNAP29, LZ 1 and MIF.
1The FLCN probe is included in the ML P200 and P300 reference kits. It is located within the SMS region on chromosome 17p11.2, and was found deleted in all patients with deletions in RAI1. 2Adopted child. Not
determined (n.d.); years (yr); months (m . ID, intellectual disability; DD, developmental delay; GDD, global DD; ADHD, attention-deficit hyperactivity disorder.
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Figure 1 Partial electropherograms for control individuals (red) and for the patient (blue) normalized by the GeneMarker software
showing the custom probes with reduced or amplified peak heights (arrows). A) sample with increased copy number for the probes PRKAB2
and ACP6. B) sample with reduced copy number for the probes HDAC4 and GPR35. C) sample with reduced copy number for the probe GPR35.
D) sample with reduced copy number for the probe EHMT1. E) sample with reduced copy number for the probe SH2B1. F) sample with
increased copy number for the probes CDIPT and MAPK3. G) sample with reduced copy number for the probe RAI1. H) sample with reduced
copy number for the probe CRKL. I) sample with increased copy number for the probe CRKL. J) sample with reduced copy number for the
probe RAB36.
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Figure 2 Electropherograms patterns using control DNAs. The two MLPA testing panels are shown (‘A’ probe set added to P300; ‘B’ probe
set added to P200). Each peak represents the amplicon signal from a correspondent gene or control probe loci as labeled at bottom X-axis. The
top X-axis indicates the size of the amplicon and the Y-axis indicates the fluorescent intensity. Arrows indicate X and Y chromosome specific control
probes. For normal female control (A), it was observed absence of Y-specific DNA sequences. For normal male sample (B), it was observed a decrease
for the dosage of X-specific control probe with respect to a female control.
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most distal probe in the gene TNFRSF13B, near the distal
SMS repeat (SMS-REP), and the most proximal probe in
MFAP4, between the middle and proximal SMS-REPs.
According to these MLPA results, the deletion of patient 9
has a minimum size of 2.2 Mb, with the distal breakpoint
occurring between probes TNFRSF13B (not deleted) and
FLCN (deleted), and extended proximally through MFAP4
(deleted). The deletions of patients 10–12 have a minimum
size of 2.4 Mb mapping between deleted MLPA probes
TNFRSF13B and MFAP4.
The remaining 6 patients had CNVs at the 22q11.2

locus: patients 13–15 had a deletion for the most proximal
probe CRKL (Figure 2H), patient 16 had a duplication for
this same probe (Figure 2I), and patients 17 and 18 had a
deletion for the most distal probe RAB36 (Figure 2J); no
deletion of the region detected by probe MAPK1 was
observed in any of these patients. Two of the CNVs were
apparently de novo (patients 13 and 14), while three CNVs
were inherited from an unaffected parent (patients 15–17);
the inheritance could not be explored for patient 18 who is
an adopted teen. According to the results of the P023-B
MLPA probes, all deletions and the duplication of proximal
22q11.2 have a minimum size of 2 Mb mapping between
deleted MLPA probes HIRA proximally, which is located
between LCR22-A and LCR22-B, and LZTR1 distally,
located between LCR22-C and LCR22-D. The deletions of
patients 17 and 18 were delineated by CMA and shown to
have a size of ~0.6 Mb. The deletions boundaries are within
SD blocks LCR22-E and LCR22-F at the distal 22q11.2
region.
Discussion
In the present study, we aimed to develop an alternative,
more cost-efficient tool than chromosomal microarrays to
be used in the initial screening of a large cohort of patients
presenting with syndromic obesity. As many of the cur-
rently known loci associated with syndromic forms of obes-
ity have their causative genes already discovered, or have
their breakpoints localized to flanking repeat sequences, we
thought these disorders would be amenable to detection by
MLPA using a synthetic probe set. In our cohort of 338
patients, 5.3% (18 patients) had a pathogenic diagnosis
detected primarily by MLPA. Our detection rate is lower
compared with 22% of patients with a potentially patho-
genic diagnosis reported by Vuillaume et al. [22] for array-
CGH in a similar cohort. The lesser diagnostic yield in the
present study may be explained by the targeted approach
versus the whole genome approach in Vuillaume’s paper,
as the criteria to select cases is very similar in the two
studies (i.e., obesity and at least one other feature such as
DD, ID, congenital anomalies or dysmorphic features).
Although whole genome array allows the investigation of
known syndromes and abnormalities that have not been
described before, yet cost considerations still limit its use
in routine clinical application in developing countries,
whereas MLPA has been found to be a good option in
situations of cost constraints [23,24]. In our experience,
the per sample cost of MLPA to CMA is in the ratio of
1:5. Moreover, MLPA does not require validation of copy
number changes detected by more than one probe, thus
eliminating costs with additional tests for establishing the
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diagnosis. In addition, the probe set as we have developed
it detects only known aberrations so that the clinical inter-
pretation of the data is straightforward.
We diagnosed nine of patients with clinically well-defined

microdeletion syndromes complicated by obesity. Among
these, four cases had 2q37 deletions ranging from 2.2
to 6.2 Mb. In all patients, except one, the deletions in-
volved HDAC4 (histone deacetylase 4), the primary causa-
tive gene for BDMR syndrome [3], and that could be
responsible for obesity (seen in >40% of patients [25]).
The protein encoded by this gene is involved in histone
acetylation and chromatin remodeling. Consistent with
a role of HDAC4 in the development of obesity, dele-
tion in or mutation of HDAC4 was reported as result-
ing in reduced expression of the retinoic acid induced 1
(RAI1) gene, whose haploinsufficiency leads to obesity
in SMS [3]. Moreover, HDAC4 was shown to be down-
regulated in obese compared with lean subjects, and then
induced by physical activity [26]. Of note, the only two
patients with HDAC4 point mutations reported to date
were detected in BDMR patients who were obese [3].
Other two genes, CAPN10 and HDLBP, that are located
distal to HDAC4, were also associated with obesity [27]
and deleted for patient 5 carrying a 2q37 deletion that
is distal to and did not include HDAC4. Another obese
patient with a terminal deletion distal to HDAC4 was
reported by Williams et al. [3]. These results may suggest
one more distal locus at 2q37.3 critical for obesity.
A relatively small 9q34.3 deletion including only partially

the euchromatic histone methyltransferase 1 (EHMT1)
gene, in which deletion (seen in >85% of cases) or mutation
(rarely) causes KS, was found in one patient. Recent re-
ports support previous observations that obesity is present
in a higher frequency in KS [28-30]. In the latest study of
83 KS patients with BMI data, including both patients with
deletions and point mutations of EHMT1, Williemsem
et al. [30] showed that ~30-40% of the KS patients were
overweight (BMI >25), and observed that this feature was
more frequent among patients with a mutation than in pa-
tients with a deletion (42 vs. 28%, respectively). In a recent
study by Ohno et al. [31], it was demonstrated that defi-
ciency of EHMT1 in brown fat cells leads to obesity and
insulin resistance. This reinforces the notion that haploin-
sufficiency of EHMT1 is causative for obesity. Four
patients carried a 17p11.2 deletion, including RAI1, the
major gene for the phenotypic features of SMS. Obesity
has been reported in >50% of SMS patients with either
deletion or mutation of the RAI1 [32,33]. Supporting
the fact that RAI1 is involved in the obesity phenotype,
Bdnf, a gene associated with obesity and hyperphagia,
was found downregulated in the hypothalamus of the
mouse model for Rai1 haploinsufficiency [34]. Further-
more, it was found in the same study that human RAI1
directly regulates the expression of BDNF.
Six patients were diagnosed with chromosome 22q11.2
abnormalities at both proximal and distal intervals. The
22q11.2 deletion spanning the four proximal LCR22s A to
D within the DiGeorge (DG) and velo-cardio-facial syn-
drome (VCFS) region was found in three patients and the
reciprocal duplication was found in another. Approxi-
mately one in every 167 patients with neurocognitive
disorders and multiple congenital anomalies has a dele-
tion in the 22q11.2 DG region, while its reciprocal dupli-
cation occurs in 1 of every 384 such cases [35,36]. Two
distinct studies have reported a high prevalence of obesity
in adolescents and adults with DG [37,38]. In one of these
studies, it was shown that at adolescence or early adult-
hood, up to 35% of DG deletion carriers developed obesity
[38]; data on the prevalence of obesity in 22q11.2 duplica-
tion has not been published.
We have identified two patients with the 22q11.2 ‘distal’

deletion associated with a variable clinical phenotype [39].
The deletions boundaries for the two individuals are within
LCR22s E and F, whereas most reported distal 22q11.2
deletions has been shown to extend from LCR22-D to
LCR22s E or F [40,41]. Obesity (weight-for-age >90th
percentile) was reported in 6 of 22 previously published
cases [39-42], and three patients had a postnatal weight
between the 75th and 90th percentile [40,41]. In addition,
two of the obese patients reported by Fagerberg et al. [40]
had neurobehavioral problems such as food seeking
behaviors and hyperphagia. Thus, our findings further
suggest that the 22q11.2 distal deletion may predispose
to obesity and overweight.
Additionally, three other patients were found to have

recurrent CNVs associated with incomplete penetrance
and variable expressivity. A child presenting with an over-
growth phenotype (macrocephaly, growth acceleration, and
obesity) had the distal 1q21.1 duplication previously associ-
ated with macrocephaly (the reciprocal deletion is associ-
ated with microcephaly) and other features of overgrowth
[43-45]. This locus includes the brain-specific HYDIN2
gene and a cluster of NBPF genes, which have been pro-
posed as candidates for the abnormal head size [43,46].
The 16p11.2 distal deletion associated with DD and
obesity [16] was found in one individual. This deletion
was shown to account for 0.5% of severe childhood obese
cases [47], and was reported in 46 of 38851 (0.12%)
patients with DD in two recent large studies [36,48]. This
locus includes the SH2B adaptor protein 1 (SH2B1) gene,
which is likely responsible for obesity in these individuals
[16]. Another patient was found with the proximal 16p11.2
duplication associated with neurocognitive deficits and
known to increase the risk of being underweight [49],
whereas the reciprocal deletion cosegregates with se-
vere early-onset obesity [17]. Both the deletion and the
duplication were shown to occur in 0.2-0.4% patients
submitted for clinical CMA testing [35,36].



Table 2 Genomic regions and genes in the MLPA probe set

Regions Gene(s) Evidence Refs

1q21.1 PRKAB2 Recurrent deletions and duplications at 1q21.1 are susceptibility factors for a variety of neurodevelopmental
phenotypes. In one study, 6 out of 7 adults with 1q21.1 duplications had obesity or overweight and in 2 of
6 children with data, weight was above the 90th percentile. In another study, four patients were described
with obesity and 1q21.1 deletions. Obesity was reported in four patients from DECIPHER (249137, 289048,
268066, and 249571) with duplication and in another (DECIPHER 290856) with deletion.

[43-45]

ACP6

2p25.3 ACP1 Deletions of 2pter are rare, and have often been associated with a PWS-like phenotype. The genes ACP1,
TMEM18, and/or MYT1L were proposed as obesity candidates.

[9,10,21]

TPO

MYT1L

2q37.3 HDAC4 Deletions of the chromosome region 2q37 or mutation in the HDAC4 gene cause BDMR syndrome (obesity
is seen in >40% of patients).

[3,25]

GPR35

3p26.3 CNTN6 One patient described with syndromic obesity presenting with a 3pter deletion including only CNTN6 and
CHL1 genes, both encoding neuronal adhesion molecules. Another patient with obesity reported in DECIPHER
(249965) harboring an overlapping deletion in band 3p26.3.

[21]

CHL1

4p16.1 ACOX3 Williams et al. reported on a patient with a typical SMS phenotype showing obesity (SMS336) presenting
with dup (4)(p16.1).

[58]

CPZ

6q16.3 SIM1 Obese patients presenting with a PWS-like phenotype and 6q16 deletions including SIM1. Obesity has been
reported in Sim1 haploinsufficient mice and in a patient with a balanced translocation disrupting SIM1. SIM1
is a basic helix-loop-helix transcription factor involved in the development and function of the paraventricular
nucleus of the hypothalamus.

[6,21,50]

7q22.1 RELN Two reports of 7q22 deletions in a patient presenting with syndromic obesity, and in another showing
overgrowth and obesity.

[21,59]

9q21.33 NTRK2 A heterozygous de novo mutation in NTRK2 was found in a child presenting with severe obesity, hyperphagia,
and DD. NTRK2 is a highly specific receptor for BDNF, which makes its position within the leptin-melanocortin
pathway evident.

[56,57]

9q34.3 EHMT1 EHMT1 deletion (seen in >85% of cases) or mutation (rarely) causes KS. Obesity is present in a higher frequency
in KS (~30-40%), and is more prevalent among patients with EHMT1 mutation than in patients with deletions
(42 vs. 28%, respectively).

[30]

11p14.1 BDNF Deletions extending the BDNF locus are associated with risk of obesity in a subgroup of patients with WAGR.
Deletions outside of the WAGR region but spanning BDNF were reported in four patients with DD, behavioral
problems, and obesity. Disruption of BDNF expression was associated with hyperphagia, obesity, and cognitive
impairment in one published patient

[7,14,51]

MPPED2

12q15q21.1 PTPRB Identical twins with deletion 12q15q21.1 presenting with syndromic obesity. [21]

RAB21

TPH2

14q11.2 CHD8 Only one patient described with syndromic obesity presenting with a 14q11.2 microduplication encompassing
SUPT16H and CHD8, highly expressed in adult and fetal brain, RAB2B, and two small nucleolar RNA (snoRNAs) [21].

[21]

RAB2B

14q12 PRKD1 Only one patient described with syndromic obesity presenting with a 14q12 microdeletion including only PRKD1
and a microRNA (MIR548AI) gene.

[21]

15q11.2 IPW IPW is located to the critical region containing the functional PWS gene locus, and was found deleted in patients
with atypical 15q11.2 deletions presenting the major features of PWS but normal methylation analysis.

[52-55]

16p11.2 CDIPT The proximal 600-kb recurrent deletion within 16p11.2 confers susceptibility to autism and often cosegregates
with early-onset obesity and neurodevelopmental disorders. The distal recurrent SH2B1-containing deletion
within 16p11 was shown to account for 0.5% of severe childhood obese cases often co-occurring with DD.
SH2B1 is involved in leptin and insulin signaling and is a solid candidate for obesity.

[16,17]

MAPK3

SH2B

17p11.2 RAI1 Deletions of the chromosome region 17p11.2 or mutation in the RAI1 gene cause SMS. Obesity and
hypercholesterolemia are phenotypes of SMS. RAI1 encodes a transcriptional regulator that directly
regulates the expression of BDNF, a gene associated with obesity and hyperphagia. Bdnf was found
downregulated in the hypothalamus of the mouse model for Rai1 haploinsufficiency.

[32-34]

22q11.2 CRKL Obesity in patients from literature with deletions at both proximal and distal chromosome 22q11.2 intervals, and
in patients from DECIPHER (2184, 2695, 248709, 250255, and 250888).

[37-42,60]

MAPK1

RAB36
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Table 3 The MLPA probe sequences

Probes 5’-LPO (Left probe oligonucleotides) 3’-RPO (Right probe oligonucleotides) Genomic position
(GRCh37/hg19) Length (nt)

Added to the SALSA® MLPA® P200 Human DNA reference kit

ACP1 TAAGAAATCATGGCATTCACACAGCCCAT AAAGCAAGACAGGTAGACAAGCTCTTGTT chr2 + 272265-272322 100

TPO GAACGAGGAGCTGACGGAAAGGCTCTTTGTG CTGTCCAATTCCAGCACCTTGGATCTGGCGT chr2 + 1491663-1491724 104

MYT1L TCTGCATGCTGCCCGGAGTTGTTGTTAAACATG AGTCTGTGTATTCAAGGCTAGTTTCCTGGGGCG chr2 - 2329482-2329547 108

CNTN6 GCATGGACCTTCAATGATAACCCCTTATAC
GTCCA

AGAGGACAATAGGCGATTTGTATCTCAAGAG
ACGG

chr3 + 1337296-1337365 112

ACOX3 GGTGGCCAGAGTTTTCTGTGAACAAACCTG
TCATAGG

AAGTCTGAAATCGAAGCTCTAGTGGGACTGG
CACACA

chr4 - 8368673-8368746 116

CPZ TCCACCCCATGATGATGGACAGGTCGGAGA
ATAGGTGTG

GAGGCAATTTCCTGAAGAGGGGGAGCATCAT
CAACGGGG

chr4 + 8613788-8613865 120

RELN TCTGCGGGTCATATTCATACCTTCTGATGAAG
TTGTACAAC

ACCAGCAACATTATAATGGCCCTGTAGCTCTGA
ATGCTATT

chr7 - 103112316-103112397 124

CHD8 GCCTTCTTGCAGGAAGTATATAATGTGGGCA
TCCATGGTCCCT

TCTTGGTCATTGCCCCACTGTCCACAATTACTAA
CTGGGAGCG

chr14 - 21876574-21876659 128

RAB2B GAGTGTGCTTTCTCTTTCAGGTGTGGGGAAG
TCATGTCTCCTCCT

GCAGTTTACAGATAAGCGGTTCCAGCCTGTCCA
CGACCTCACAAT

chr14 - 21944689-21944778 132

CRKL TAGTGATAATAGAGAAGCCTGAAGAACAGT
GGTGGAGTGCCCGGAAC

AAGGATGGCCGGGTTGGGATGATTCCTGTCCCTT
ATGTCGAAAAGCT

chr22 + 21288204-21288297 136

MAPK1 GTCCTTCGTTATGTTCCCCAGATGTCTTCCA
GATTTGCTCTGCATGTGG

TAACTTGTGTTAGGGCTGTGAGCTGTTCCTCGA
GTTGAATGGGGATG

chr22 - 22114451-22114546 140

RAB36 CACAGGTTTTGCAAGAATGTTTTTGATCGA
GACTACAAGGCCACCATTGGG

GTGGACTTTGAAATTGAGCGCTTTGAGATTGCTG
GGATTCCCTATAGCCTC

chr22 + 23495215-23495316 144

PTPRB GGGAATGTGGAACGATACCGGCTGATGC
TAATGGATAAAGGGATCCT

AGTTCATGGCGGTGTTGTGGACAAACATGCTAC
TTCCTATGCTTTTCACGGGC

chr12 - 70988331-70988430 148

TPH2 CAGGGTGGAGTATACTGAAGAAGAAACT
AAAACTTGGGGTGTTGTATTCCGGGAG

CTCTCCAAACTCTATCCCACTCATGCTTGCCGA
GAGTATTTGAAAAACTTCCCTC

chr12 + 72366314-72366423 152

RAB21 GAGCAGAGGAAGAGATCCCAGATAGTAG
CCAGTTAACCAAGACTCATTCATATAGCA

CGTAGTTTATGTTCCTGAGGCAGCACTTTTAGAT
CCTTTGTGAGCAAGTTCTATTTG

chr12 + 72180755-72180868 156

CHL1 GGTGATGTTGTCTTCCCCAGGGAAATCAGT
TTTACCAACCTTCAACCAAATCATACTGC

TGTGTACCAGTGTGAAGCCTCAAATGTCCATG
GAACTATCCTTGCCAATGCCAATATTG

chr3 + 401981-402098 160

PRKD1 GCCACCTTTGAAGACTTTCAGATTCGTCCCC
ACGCTCTCTTTGTTCATTCATACAGAGCTC

CAGCTTTCTGTGATCACTGTGGAGAAATGCTGT
GGGGGCTGGTACGTCAAGGTCTTAAATG

chr14 - 30135288-30135409 164

IPW TTGCCCATTTATCTGTACCGCCATCTTGCGCA
TATGCTGTACTCTCATCTGTGACTGGCTCCA

TTTTTGTTCTGTGGATTTGTGTGTCTCTTCTTCTG
CCTCCTGTCTCGTGTCTGCTCGTTGGAA

chr15 + 25365689-25365814 168

Added to the SALSA® MLPA® P300 Human DNA reference kit

PRKAB2 TTCTTGCTGTCTTCTACCAGGGGCTGCTG ACTCCAGTTACCCATGGAATGCAGGACCT chr1 - 146627622-146627679 100

ACP6 TCTAGCTGGTGGTCCGAAACCATATTCTCCT TACGACTCTCAATACCATGAGACCACCCTGA chr1 - 147131764-147131825 104

HDAC4 GCCGTGGCCACCATTCACCTCTGTAATTTA
ATCCGT

TTCTCTTGGATTGTCTGGACGTGCCCGATGG
TTCTT

chr2 - 239970066-239970137 114

GPR35 TGTACATAACCAGCAAGCTCTCAGATGCCA
ACTGCTGC

CTGGACGCCATCTGCTACTACTACATGGCC
AAGGAGTT

chr2 + 241570142-241570217 118

SIM1 GAAGAGAACAGATTACAGCTAAGGAAAGC
CCCCTCAGACC

AACTGGCTTCCATTAATGGGGCTGGGAAAAA
ACACTCCCT

chr6 - 100838727-100838806 122

NTRK2 CTAGTGTTGCAGTATAGCTTTGGCATGTTCA
TGAGTGAGCACCCAG

AATGTGTTGAACCAACCCCCACCCCTAACTA
CTGACTATGACTGCA

chr9 + 87430124 -87430215 134

EHMT1 CCTCTAACTGACGTTTCTTTTCGAGGAAGTGG
CTTGGTGGGTGCAGCC

CCCGCCGGTTCCGTTGACGCTGGCACCTTCTG
TTGATTTTTTAAGCCA

chr9 + 140730014-140730109 138

BDNF CCTCATTGAGCTCGCTGAAGTTGGCTTCCTA
GCGGTGTAGGCTGGAATAG

ACTCTTGGCAAGCTCCGGGTTGGTATACTGGG
TTAACTTTGGGAAATGCA

chr11 - 27741944 -27742043 142

MPPED2 GTTATGGCATCATGACCGACGGTTACACAAC
GTACATCAATGCCTCGACGTGTAC

AGTCAGCTTTCAACCGACCAACCCTCCAATTA
TATTTGACCTTCCAAACCCACAG

chr11 - 30433024-30433133 152
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Table 3 The MLPA probe sequences (Continued)

SH2B1 GATTGGTTTGCACTTCTTGGCTGGGTTCCCCC
GTGCTCCATGACTCCTGCATCTCCT

GATTGTTTCTCGTTGGTTTGGAGTTGTCCCTGCG
GTTGGAGCCATCTGAGCTTGTAG

chr16 + 28875745-28875858 156

CDIPT TAGGAGGTCCCAGTCTCACGCCTTCCTCATG
TGTTGTTCTACCTGCTGGGATGGGGGTC

AGCCTCTCTTTGGTGACGTCACGTTCTCTGGGA
TCCTGAGGACCCGGGCCTCAAATCAG

chr16 - 29870318-29870435 160

MAPK3 GACTCGCGTGGCCATCAAGAAGATCAGCCCC
TTCGAACATCAGACCTACTGCCAGCGCACG

CTCCGGGAGATCCAGATCCTGCTGCGCTTCCG
CCATGAGAATGTCATCGGCATCCGAGACA

chr16 - 30133182-30133303 164

RAI1 TCGCTACGCCTGACCCCAAAAAGACAACTGG
TCCTCTCTCCTTTGGTACCAAGCCCACCCTTG

GGGTTCCTGCTCCAGACCCCACTACAGCAGC
TTTTGACTGTTTCCCGGACACAACCGCTGCCA

chr17 + 17698343-17698468 168

LPO: starts with GGGTTCCCTAAGGGTTGGA (forward primer binding sequence).
RPO: ends with TCTAGATTGGATCTTGCTGGCAC (reverse primer binding sequence).
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As for the remaining probes in the probe set, we were
unable to identify copy number imbalances in patients from
our cohort. At least two CNVs, of SIM1 at 6q16 and BDNF
at 11p14, are well known to include obesity as a phenotype
[6,7,14,50,51]. In addition, 2p25.3 deletions spanning
MYT1L have now been reported in a number of patients
with a PWS-like phenotype [9,10,21]. The Imprinted in
Prader-Willi (IPW) non-coding RNA is located to the crit-
ical region containing the functional PWS gene locus, in-
cluding the SNORD109A and SNORD116 snoRNA cluster
[52]. This minimal region was delineated based on the
study of rare cases resulting from atypical 15q11q12 micro-
deletions without methylation abnormalities [52-55]. Ex-
tremely rare mutations in NTRK2, which encodes a highly
specific receptor for BDNF, were found in severely obese
children with DD [56,57]. However, it is currently un-
known whether or not CNVs of the NTRK2 gene also
can result in a comparable phenotype. None of the probes
within new candidate loci for syndromic obesity (i.e., 3p26.3,
4p16.1, 7q22.1, 12q15q21.1, 14q11.2, and 14q12) [21,58;
Table 2], were found as copy number variable in any add-
itional patient. Hence, the contribution of these CNVs to
obesity still remains uncertain and yet to be demonstrated.

Conclusions
Our study demonstrates the utility of an MLPA-based
first line screening test in the evaluation of the genetic
etiology of syndromic obesity in 338 patients. The over-
all detection rate with the synthetic MLPA probe set was
about 5.3% (18 out of 338). As compared to chromosomal
microarrays, it is an efficient, rapid, less labour intensive
and cost-effective alternative for interrogating the copy
number status at multiple loci that are known to cause
this phenotype. Application of CMA testing to as yet un-
diagnosed individuals will uncover new loci responsible
for the patients’ phenotype, which would otherwise remain
undetected based solely on the MLPA evaluation. These
could eventually become new microdeletion/duplication
syndromes associated with syndromic obesity. Our results
also suggest that obesity could likely be a feature of the
22q11.2 distal deletion syndrome. Finally, our experience
leads us to suggest that incorporating an MLPA-based first
line screening test targeting various loci in which altered
dosage is known to result in obesity as a phenotype (such as
1p36, 2p25, 2q37, 6q16, 9q34, 11p14, 16p11.2, and 17p11.2),
could provide an effective alternative diagnostic approach
to chromosomal microarrays for syndromic obesity, espe-
cially in clinical settings where CMA is not available.

Methods
Patients
Three hundred and thirty-eight nonrelated individuals
with a prior negative methylation test for PWS were in-
cluded in this study. The study protocol was reviewed and
approved by the Human Research Ethics Committee at
the Institute of Biosciences, University of São Paulo (CEP/
IB/021/2004). Parents or guardians also provided written
informed consent. All the patients had a general diagnosis
of DD/ID along with obesity or overweight. However, this
cohort also includes other phenotypic findings including,
but not restricted to, congenital malformations, hypotonia
and feeding difficulties, behavioral issues, autism spectrum
disorders, hyperphagia, hearing impairment, epilepsy, and
dysmorphic features. Part of this cohort had previously
been discarded for microdeletions of chromosome 1p36
by the syndrome-specific SALSA MLPA kit (P147, MRC
Holland, Amsterdam, The Netherlands) [61]. All DNA
samples were obtained from peripheral blood using the
Autopure LS® (Gentra Systems, Inc., Minneapolis, MN).

Multiplex-ligation dependent probe amplification (MLPA)
Synthetic MLPA probe set
The probe set includes 31 MLPA probes for the detection
of copy number imbalances involving the following chro-
mosomal regions (genes): 1q21.1 (PRKAB2, ACP6), 2p25.3
(ACP1, TPO, MYT1L), 2q37 (HDAC4, GPR35), 3p26.3
(CNTN6, CHL1), 4p16.1 (ACOX3, CPZ), 6q16 (SIM1),
7q22.1 (RELN), 9q21.33 (NTRK2), 9q34 (EHMT1), 11p14
(BDNF, MPPED2), 12q15q21 (PTPRB, RAB21, TPH2),
14q11.2 (CHD8, RAB2B), 14q12 (PRKD1), 15q11.2 (IPW),
16p11.2 (SH2B1, CDIPT, MAPK3), 17p11.2 (RAI1) and
22q11.2 (CRKL, MAPK1, RAB36) (Table 2). Up to three
probes were designed preferably in coding regions of
specific genes within the regions of interest. The probes
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were designed online using the publicly available MAPD
software [62]. Individual oligonucleotide probes (size range
100–168 nt) were synthesized by IDT® (Integrated DNA
Technologies, Belgium) and added to the SALSA® MLPA®
P200 and P300 Human DNA reference kits (Table 3). The
MLPA reactions were performed on 100–250 ng genomic
DNA samples following the MRC-Holland protocol [63].
MLPA products were size-separated by capillary electro-
phoresis on the 3730 Genetic Analyser (Applied Biosystems,
UK) and interpreted with the GeneMarker (v1.95) software
(SoftGenetics, LLC. State College, PA, USA) using the
“population normalization” method. Peak ratios between
0.75 and 1.25 were considered normal (i.e. two copies).
Figure 2 shows the MLPA profiles for the two testing
panels in control samples of different sex. These panels
were validated by the analysis of DNA of patients with
known CNVs (data not shown). When available, blood
samples were obtained from patients’ parents, and CNV
inheritance was investigated.

Follow-up MLPA kits
When an alteration was found within the 17p11.2 (SMS)
region or in 22q11.2 within the DG/VCFS region, con-
firmatory testing was performed with commercial MLPA
kits (MR-1 MLPA kit P064-B2 and DG/VCFS MLPA kit
P023-B, respectively).

Chromosomal microarray analysis (CMA)
The alterations in 10 patients were verified using at least
one array platform. The arrays used in this study are the
Affymetrix 500 K SNP-array (Affymetrix, Santa Clara,
CA, USA), the CytoSure ISCA 180 K oligoarray-CGH
(Oxford Gene Technology, Oxford, UK), and a 60 K
custom-designed 60-mer oligoarray (Agilent Technologies,
Palo Alto, CA, USA). SNP-array testing was performed as
previously described [21]. Oligoarrays were hybridized ac-
cording to the manufacturer’s’ instructions. Hybridizations
were performed in duplicates with dye-reversal method.
Scanned images were processed using Agilent Feature Ex-
traction software and analyzed with Genomic Workbench
software (both from Agilent Technologies) applying the
statistical algorithm ADM-2 with a sensitivity threshold of
6.7. Duplication or deletion was considered when the log2
ratio of the Cy3/Cy5 intensities of a given region encom-
passing at least three probes was >0.3 or - < 0.3, re-
spectively. Genomic coordinates were converted to UCSC
genome browser build February 2009 (GRCh37/hg19).
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