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Abstract

Background: The chromosomal homologies of human (Homo sapiens = HSA) and silvered leaf monkey
(Trachypithecus cristatus = TCR) have been previously studied by classical chromosome staining and by fluorescence
in situ hybridization (FISH) applying chromosome-specific DNA probes of all human chromosomes in the 1980s and
1990s, respectively.

Results: However, as the resolution of these techniques is limited we used multicolor banding (MCB) at an ~250-band
level, and other selected human DNA probes to establish a detailed chromosomal map of TCR. Therefore it was
possible to precisely determine evolutionary conserved breakpoints, orientation of segments and distribution of
specific regions in TCR compared to HSA. Overall, 69 evolutionary conserved breakpoints including chromosomal
segments, which failed to be resolved in previous reports, were exactly identified and characterized.

Conclusions: This work also represents the first molecular cytogenetic one characterizing a multiple sex chromosome
system with a male karyotype 44,XY1Y2. The obtained results are compared to other available data for old world
monkeys and drawbacks in hominoid evolution are discussed.
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Background
Trachypithecus cristatus (TCR) [1], also known as silvered
lutung, silvered leaf monkey or the silvery langur, belongs
to superfamily Cercopithecoidea, family Cercopithecidae,
subfamily Colobinae. The colobines divided during evo-
lution into an African clade and an Asian clade [2]. TCR
is widely distributed in continental Southeast Asia
including Myanmar, West-central Thailand, Cambodia,
Laos, Vietnam and Southern China [2-4]. Recently, four
species groups were recognized (T. pileatus, T. francoisi,
T. obscurus and T. cristatus), including 18 species only
in the Asian colobine of Trachypithecus. Genus TCR was
initially denominated with various Latin names between
1821 and 1962, like Simia cristata, Semnopithecus cristata,
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Pygathrix cristata, Presbytis cristata, before the current
name Trachypithecus cristatus was introduced [2].
The karyotype of TCR was described in 1970 as 2n = 44

[5]. In the 1980s, chromosome banding analysis were used
in TCR [6-8], including comparative R-banding of three
different species of Colobus genus [6]. In 1983, G and Q
banding were applied to analyze the banding patterns of a
female TCR [7]. One year later, male TCR was character-
ized as carrying an evolutionary conserved translocation
involving the Y chromosome and two autosomes [9]. Fur-
thermore, since 1997 chromosomal homologies between
human chromosomes and TCR has been established by
fluorescence in situ hybridization (FISH) applying human
whole chromosome paintings. Thus, up to now, unique
reciprocal translocations corresponding to HSA Y & 5,
HSA 1 & 19, and HSA 6 & 16 as well as fusions of HSA
14 & 15 and HSA 21 & 22, were characterized [10]. How-
ever, as whole chromosome paints have only a limited
Ltd. This is an Open Access article distributed under the terms of the Creative
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resolution [11], we established a detailed comparative
chromosome map of TCR primarily based on multicolor
banding (MCB). The potential of this approach in order to
clarify and to resolve evolutionary conserved chromosomal
rearrangements was already shown by our group for other
primates [12-14].

Results
MCB results are summarized in Figure 1 and in Tables 1
and 2. Representative results of probes specific for all
acrocentric short arms in HSA, the NOR-region and
Figure 1 Representative results from this study using human MCB pr
pseudo-colored results of HSA and TCR, at an ~250-band level. HSA c
yellow figures. The chromosomes are sorted here according to the HSA-ch
FISH-results shown using probes as indicated. Red arrows stand for TCR centro
of a human chromosome – region not stained by MCB probe; acro-p-arm = p
HSA = Homo sapiens; NOR = HSA specific FISH-probe for nucleolus organizing
determining region Y; TCR = Trachypithecus cristatus.
SRY are also shown in Figure 1. As outlined in Table 1 the
majority of TCR chromosomes are completely homologous
to one of the human chromosomes, exceptions are
only TCR 5 (homologous to HSA 14 and 15), TCR 6
and 8 (homologous to HSA 1 and 19), TCR 9 and 16
(homologous to HSA 6 and 16), TCR 15 (homologous
to HSA 21 and 22), and TCR Y1 and Y2 (homologous
to HSA Y and 5).
The centromeric positions could be narrowed down to

the subband level for all 24 TCR chromosomes (Table 1).
In the following chromosomes the TCR centromeric
obes on TCR in comparison to HSA chromosomes are depicted as
hromosomes are numbered by white figures, TCR chromosomes by
romosomes. In subfigures for HSA 5, 9, 14 and Y there are additional
meres and white arrows for HSA-centromeres. Abbreviations: # = number
robe for all acrocentric short arms in HSA; H = heterochromatin,
region; st = subtelomere; SRY = HSA specific FISH-probe for sex



Table 1 Homologous regions, centromere position and heterochromatic inserts observed in this study of TCR
compared to HSA chromosomes

TCR chromosome Homologous HSA-regions (for rearrangements see Table 2) Centromere position Heterochromatic inserts in

TCR 1 HSA 5pter-5qter like in HSA 5 n.d.i.t.s.

TCR 2 HSA 3pter-3qter HSA 3q26 n.d.i.t.s.

TCR 3 HSA 4pter-4qter like in HSA 4 n.d.i.t.s.

TCR 4 HSA 7pter-7qter like in HSA 7 - end of HSA 7p

- 7q11.1

TCR 5 HSA 15q11.2-15qter, HSA 14q11.2-14qter HSA 15q26.1 ~ 26.2 - fus HSA 14q11.2 / 15q26.3

TCR 6 HSA 1p22-1qter, HSA 19pter-19p13.2 fus HSA 1q22 / 1p14 - fus HSA 1q22 / 1q41;

- fus HSA 1q41 / 1p22;

- 1q24

TCR 7 HSA 8pter-8qter like in HSA 8 n.d.i.t.s.

TCR 8 HSA 1pter-1p22, HSA 19p13.2-19qter like in HSA 19 - end of HSA 19q

TCR 9 HSA 6pter-6q15, HSA 16p13.1-16qter like in HSA 16 - end of HSA 6p;

- 6p21

TCR 10 HSA 12pter-12qter like in HSA 12 - end of HSA 12p

TCR 11 HSA 2q14.1-2qter HSA 2q24.2 - distal from HSA 2q14.1;

- 2q21;

- 2q31

TCR 12 HSA 10pter-10qter like in HSA 10 - end of HSA 10p;

- fus HSA 10q21.1 / 10q22.3

- HSA 10p11.1

- HSA 10q11.1

TCR 13 HSA 11pter-11qter HSA 11p15.3 n.d.i.t.s.

TCR 14 HSA 9pter-9qter HSA 9q33 ~ 34.1 - end of HSA 9q

- end of HSA 9p

TCR 15 HSA 21q11.2-21qter, HSA 22q11.21-22qter fus 21q11.2 / 22q11.21 n.d.i.t.s.

TCR 16 HSA 6q15-6qter, 16pter-16p13.1 HSA 6q21 - HSA 6q21

TCR 17 HSA 2pter-2q14.1 like in HSA 2 - end of HSA 2p

TCR 18 HSA 17pter-17qter like in HSA 17 - HSA 17p11.1

TCR 19 HSA 13q12.1-13qter HSA 13q14 - HSA 13q32 ~ 33

TCR 20 HSA 18pter-18qter HSA 18q21 n.d.i.t.s.

TCR 21 HSA 20pter-20qter HSA 20p12 - HSA 20p11.1

- HSA 20q11.1

TCR X HSA Xpter-Xqter like in HSA X n.d.i.t.s.

TCR Y1 HSA 5p12-5q31.2, HSA Ypter-Yp11.2 like in HSA 5 - HSA 5p11

- HSA 5q11.1

TCR Y2 HSA 5pter-5p12, HSA 5q31.2-5qter,HSA Yp11.2-Yq11.23 like in HSA Y - distal from HSA Yp11.23

Abbreviations: fus = fusion of; n.d.i.t.s. = none detected in this study.
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positions were the same as in HSA: TCR 1 ( = HSA 5),
TCR 3 ( = HSA 4), TCR 4 ( = HSA 7), TCR 7 ( = HSA 8),
TCR 8 ( = HSA 19), TCR 9 ( = HSA 16), TCR 10 ( = HSA
12), TCR 12 ( = HSA 10), TCR 17 ( = HSA 2), TCR 18
( = HSA 17), TCR X ( = HSA X), TCR Y1 ( = HSA 5),
and TCR Y2 ( = HSA Y). Centromere positions chan-
ged compared to HSA in TCR 2 (HSA 3q26), TCR 5
(HSA 15q26.1 ~ 26.2), TCR 6 (HSA 1q22/ 1p14), TCR
11 (HSA 2q24.2), TCR 13 (HSA 11p15.3), TCR 14
(HSA 9q33 ~ 34.1), TCR 15 (HSA 21q11.2/ 22q11.2),
TCR 6 (HSA 6q21), TCR 19 (HSA 13q14), TCR 20
(HSA 18q21) and TCR 21 (HSA 20p12).
None of the aforementioned TCR centromeric regions

that kept their position during evolution compared to



Table 2 Evolutionary conserved breakpoints in TCR chromosomes compared to HSA; the positions are analyzed
concerning their location in GTG-light bands, colocalization with human fragile sites and breakpoints observed in HLA
and GGO using MCB-approach

HSA chr. Evolutionary conserved breakpoints including
neo-centromere and heterochromatin positions

GTG- light
band

Fragile site
in same band

Same breakpoint in HLA
[Mrasek et al., 2003 [13]]

Same breakpoint in GGO
[Mrasek et al., 2001 [12]]

1 1p22 + FRA1D - -

1q22 - - - -

1q24 - - + -

1q41 - FRA1R - -

2 2p25.3 - FRA2M - -

2q14.1 - FRA2 - +

2q21 + FRA2F - ?+

2q24.2 + FRA2T + -

2q31 + FRA2G - -

3 3p26.3 - FRA3E - -

3p25 + FRA3F - -

3p23 + - - -

3p21.3 + FRA3H ?+ -

3p14 - FRA3B ?+ -

3q22 - FRA3N ?+ -

3q25 + FRA3D + -

3q26 - FRA3O - -

3q28 - FRA3P - -

4 4p12 + FRA4H - +

4q22 - FRA4F - -

5 5p15.2 - FRA5H - -

5q11.2 + FRA5I ?+ -

5q21 - FRA5F - -

5q31.2 - FRA5C - -

5q35.3 (a) + FRA5G - +

5q35.3 (b) + FRA5G - +

6 6p25.3 + - - -

6p21 + FRA6H - -

6q15 + FRA6G + -

6q21 + FRA6F - -

7 7p22.3 + FRA7B + -

7p15.3 + - - -

7q11.1 - FRA7A - -

7q11.23 + FRA7J - +

9 9p34.2 - - - -

9q24.3 + - - -

9q33 ~ 34.1 - FRA9M - -

10 10p15.3 + FRA10H - -

10p11.2 + FRA10J - ?+

10p11.1 - - - -

10q11.1 - FRA10G - -

10q21.1 - FRA10C + -
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Table 2 Evolutionary conserved breakpoints in TCR chromosomes compared to HSA; the positions are analyzed
concerning their location in GTG-light bands, colocalization with human fragile sites and breakpoints observed in HLA
and GGO using MCB-approach (Continued)

10q22.3 + FRA10D ?+ +

11 11p15.4 - - - -

11p15.3 + FRA11J - -

11q12 - - + -

12 12p13.33 + FRA12F - -

13 13q12.1 + - - -

13q14 + FRA13G ?+ -

13q32 ~ 33 + FRA13D + -

14 14q11.2 + FRA14D ?+ +

15 15q11.2 + FRA15C ?+ -

15q26.1 ~ 26.2 + FRA15G ?+ -

16 16p13.1 + FRA16H + -

17 17p11.1 - FRA17C ?+ -

17q21.3 + FRA17D ?+ -

17q24 - FRA17E + -

18 18q21 + FRA18B - -

19 19p13.2 - - ?+ -

19q13.2 - - + -

19q13.43 - - ?+ -

20 20p12 - FRA20B - -

20p11.1 - - - -

20q11.1 - FRA20D - -

21 21q11.2 + FRA21 ?+ -

22 22q11.21 + - ?+ -

Y Yp11.31 - - - -

Yp11.2 + - - -

Yq11.23 + - - -

Abbreviations: - = no; + = yes; ? + = most likely yes; a and b in 5q35.3 = break within subtelomere region.
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human showed positive FISH-signals with any of the
used HSA centromere specific probes (data not shown).
Also, none of the other human heterochromatin specific
probes from HCM probe set gave any specific signals
in TCR, with 2 exceptions: NOR-specific signals were
observed in TCR 5 (at fusion of HSA 14q11.2 and 15q26.3)
(Figure 1) and the probes midi54 (Figure 1) and midi 36
(data not shown); the latter two located on the distal end
of the long arm of TCR 14.
In the literature there were 81 TCR specific heterochro-

matic insertions and/ or additions to chromosomes reported
(Figure 2). In this study only 25 of them were confirmed
and mapped (Figure 2 and Table 1, last column).
Table 2 summarizes the 69 evolutionary conserved

breakpoints observed in TCR in this study; they are given
according to the homologous regions in HSA. Only HSA
chromosomes X (TCR X) and 8 (TCR 7) are completely
unaltered during evolution from a common ancestor of
HSA and TCR. All other homologous of TCR chromo-
somes have undergone one (HSA 12, 14, 16, 18, 21 and 22),
two (HSA 4 and 15), three (HSA Y, 11, 13, 17, 19, and 20),
four (HSA 1 and 6), five (HSA 2), six (HSA 5, and 10), or
nine (HSA 3) evolutionary conserved break events during
speciation in respect to the human karyotype.
Besides, the characterized breakpoints of TCR are

compared with such previously mapped in Hylobates lar
(HLA) and Gorilla gorilla (GGO) using MCB approach
(Table 2). Again, an alignment of the breakpoint and their
positioning in GTG-light bands and their spatial proximity
to human fragile sites was done.

Discussion
The present study represents the first one that compre-
hensively characterizes the karyotype of TCR. In general,



Figure 2 A summary of the obtained results on TCR idiograms. The homologous regions of HSA and their orientation are shown as colored
arrows on the right of each ideogram. Also the evolutionary conserved breakpoints in respect to HSA nomenclature are inscribed. Consider also
legend on top of the figure itself.
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previous homologies of HSA and TCR chromosomes could
be confirmed [10]. However, in this study, homologous
regions for TCR chromosomes 4, 10, 11, 14, 17, 18 and
21 (that were not studied before) [10] were specifically
aligned to their HSA-homologous. In contrast to [10]
NOR was mapped here to the fusion points of HSA 14
and HSA 15, i.e. TCR 5 and not TCR 15. In our two
studied individuals derived from Thailand, no differences in
TCR 1 banding pattern were seen, which is in accordance
with the literature [10].
For the first time, the exact breakpoints could be deter-

mined for the extremely rearranged karyotype of TCR,
in comparison to HSA. In fact, 69 evolutionary conserved
breakpoints were determined in a male TCR and con-
firmed in a female individual, excluding Y1 and Y2 chro-
mosomes, obviously.
In this study no special attention was given to the

centromeric regions of TCR, i.e. they were not detailed
characterized as in other studies e.g. by [15] or [16].
However, a first impression is provided in which centro-
meres kept their positions during evolution from common
ancestors to HSA and TCR and were neo-centromeres
(Table 1), i.e. ~50% of them stayed at the same positions
and ~50% moved either in one of the two species or in
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both. As expected from the literature [17], even the centro-
meric regions that kept their positions did not have the
identical alphoid sequences in HSA and TCR.
Previous studies in human chromosomal rearrangements

revealed that the majority of them (70-88%) are found in
G-light sub-bands [18]. In contrast only 37 (45.5%) of the
69 evolutionary conserved breakpoints of TCR were located
in GTG-light bands (Table 2). However, 70% of the here
observed TCR breakpoints colocalized with human fragile
sites [19] supporting their potential role in the “Fragile
Breakage Model” [20] and in the formation of evolutionary
chromosomal rearrangements [21-26] (Table 2).
Concerning evolution it is interesting to report that in

TCR and in HLA 11 evolutionary conserved breakpoints
are identical and 15 more are most likely in concordance
to each other. Even more interesting, 6 identical and 2
most likely identical evolutionary conserved breakpoints
were identified in TCR and in GGO (Table 2). These
findings need to be confirmed in further studies by locus-
specific probes, and if confirmed, they will be very useful
for the reconstruction of a common ancestral karyotype.
Compared to the postulated Hominidea ancestral karyotype
proposed by [25], only four chromosomes remained un-
changed in TCR, i.e. chromosomes 4, 7, 11 and X, eleven
chromosomes underwent only intrachromosomal changes
like inversions (TCR 2, 3, 10, 12, 13, 14, 17, 18, 19, 20, 21)
and two TCR chromosomes resulted from a fusion of
ancestral chromosomes (TCR 5 and 15).
Interestingly, the regions between TCR 1 and TCR Y1

and TCR Y2 being homologous to HSA 5 were shown
to be subject to different evolutionary conserved rear-
rangements. Broadly speaking, TCR Y1 is homologous
to TCR 1p and TCR Y2 to TCR 1q. However, each arm
of chromosome TCR 1 underwent a further paracentric
inversion, most likely being important to separate the
sex chromosomes from the chromosome 1 during meiosis.
Thus, a XY1Y2 sex chromosome system is present in
TCR, and not an X1X2Y1Y2 system as initially suggested
[10]. However, as in TCR from Indonesia, two other forms
of TCR 1 chromosome could be found [10]. Therefore, the
existence of an X1X2Y1Y2 system cannot be completely
excluded by this study.
The sex determination system in mammals is usually

highly conserved as XY-system. However, multiple sex
chromosome systems, like the one present in TCR and few
other apes [27,28] are exceptionally found in some species
of e.g. the orders Insectivora, Chiroptera, Artiodactyla,
Rodentia [29], and in marsupials [30]. In general, constitu-
tional Y-chromosome / autosome translocations in human
appear de novo and have a deleterious effect and, although
the infertility is the only common feature, other clinical
symptoms can also be observed depending on the involved
breakpoints [31]. In such cases, the infertility is thought to
be a result of disruption of the sex vesicle during meiosis
[32]. From this point of view it is hard to imagine condi-
tions which are in favor of developing a multiple sex- from
an XY-chromosome system. On the other hand, in popu-
lation genetic models of Y-autosome and X-autosome rear-
rangements the population can gain a selective advantage
under a wide range of conditions. If they can invade the
population, Y-autosome rearrangements always spread
to fixation, whereas X-autosome rearrangements may be
maintained as stable polymorphisms” [33]. The XY1Y2 sex
chromosome system observed in TCR fits well into the sug-
gestions of [34] that (i) female meiotic drive is the major
contribution to the evolution of neo-sex chromosomes and
(ii) that “in mammals, the XY1Y2 sex chromosome system
is more prevalent in species with karyotypes of more
biarmed chromosomes” rather than in species with acro-
centric chromosomes. Research on meiotic behavior of
such sex systems is scarce; however, one study on Bolivian
owl monkey (Aotus spec.) showed that no XY pairing was
observable but the Y-chromosomes formed trivalents with
an autosome during gametogenesis [27].

Conclusions
In conclusion, the presented comparative map of TCR
karyotype gives new insights into primate evolution
and can be used as a starting point for further detailed
analyses. Evolutionary conserved breakpoints, TCR-specific
heterochromatic regions, centromeric sequences as well
as the sex chromosome system can be fruitful fields of
research in near future.

Methods
Cell culture and chromosomal preparation
Immortalized lymphoblast cell lines derived from a
male and female TCR, were provided by the Khon Kaen
University, Thailand. Culture techniques and chromosome
preparation followed standard protocols.

Fluorescence in situ hybridization
General considerations for MCB labeling schemes and
details regarding probe preparation and labeling have
been described before [12,35,36]. Single and dual-color
FISH techniques were performed for the applied bacterial
artificial chromosome (BAC-) probes [37]. Locus-specific
BAC clones were purchased at BAC/PAC Chori and DNA
was isolated, PCR-amplified and labeled as described
before [37]; and probes RP11-475I16 and RP11-395 L14
(both in 2q14.1), RP11-110A24 (in 19p13.3), RP-11457 M7
(in Yp11.2) and RP11-122 L9 (in Yp11.31) were applied in
this study. Besides, commercially available human derived
probes for the SRY gene on the Y-chromosome, HSA
probes for subtelomeric regions 3pter, 3qter, 5pter, 5qter,
6pter, 6qter, 7pter, 7qter, 9pter, 9qter, 10pter, 10qter, 18pter,
18qter, 19pter, 19qter, XYpter and XYqter, and centromeric
probes cep 2, cep4, cep 7, cep 8, cep 10, cep 12, cep 16, cep
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17, cep X cep Y (Abbott/ Vysis, Wiesbaden, Germany) and
SE 1/5/19, SE 13/21 and SE 14/22 (Kreatech, Amsterdam,
The Netherlands) were also applied.
Additionally, the following homemade HSA derived

microdissection probes were used: a probe specific for
the short arm of all human acrocentric chromosomes
(midi54) [12,13], and partial chromosome paints for 3p,
3q, 5p, 5q, 6p, 6q, 7p, 7q, 9p, 9q, 10p, 10q, 18p, 18q, 19p,
19q, Yp and Yq [35]. Furthermore, the heterochromatin
mix (HCM-) probe set [38] covering chromosomal regions
1q12, 16q11.2, 9q12, 9p12/ 9q13 (midi36) 15p11.2-p11.1,
19p12/q12 and Yq12 and subcentromere specific multi-
color FISH (subcen-FISH) for chromosomes 3, 6, 7, 9, 11,
13 and 20 were also applied [36].

Microscopic evaluation
Images were captured using an Axioplan II microscope
(Carl Zeiss Jena GmbH, Germany) equipped with filter
sets for DAPI, FITC, TR, SO, Cy5 and DEAC. Image
analysis was done using pseudocolor banding and fluoro-
chrome profiles of the ISIS digital FISH imaging system
(Meta Systems Hard & Software GmbH, Altlussheim,
Germany). At least 10 up to 20 metaphases were recorded,
derived from a male and a female TCR for each applied
probe and probe set.
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