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Abstract

Background: An interstitial deletion of the long arms of chromosome 20, del(20)(q), is frequent in the bone
marrow (BM) of patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and
myeloproliferative neoplasms (MPN), and it is recurrent in the BM of patients with Shwachman-Diamond syndrome
(SDS), who have a 30-40% risk of developing MDS and AML.

Results: We report the results obtained by microarray-based comparative genomic hybridization (a-CGH) in six
patients with SDS, and we compare the loss of chromosome 20 material with one patient with MDS, and with data
on 92 informative patients with MDS/AML/MPN and del(20)(q) collected from the literature.

Conclusions: The chromosome material lost in MDS/AML/MPN is highly variable with no identifiable common
deleted regions, whereas in SDS the loss is more uniform: in 3/6 patients it was almost identical, and the
breakpoints that we defined are probably common to most patients from the literature. In some SDS patients less
material may be lost, due to different distal breakpoints, but the proximal breakpoint is in the same region, always
leading to the loss of the EIF6 gene, an event which was related to a lower risk of MDS/AML in comparison with
other patients.
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Background
Shwachman-Diamond syndrome (SDS) is an autosomal
recessive disorder (Online Mendelian Inheritance in Man
#260400) that is caused by mutations of the SBDS gene in
at least 90% of cases [1]. An interstitial deletion of the long
arms of chromosome 20, del(20)(q), is recurrent as an
acquired abnormality in the bone marrow (BM) of pa-
tients with Shwachman-Diamond syndrome (SDS) [1],
as well as in myelodysplastic syndromes (MDS), acute
myeloid leukemia (AML), and myeloproliferative neo-
plasms (MPN) [2]. The fact that SDS patients have a risk
of developing MDS/AML, evaluated as high as 30-40%
[1,3], suggested that this clonal chromosome anomaly may
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be responsible of MDS/AML, although some evidence in-
dicates that this specific anomaly in SDS is associated with
a rather low risk [4]. We postulated that the low risk of
MDS/AML is due to the loss of the EIF6 gene, mapping in
the deleted segment of chromosome 20: the function of
the EIF6 protein is pivotal in ribosome biogenesis, and the
gene/dosage effect consequent to the gene loss would
facilitate ribosome formation, impaired in SDS by SBDS
mutations [5].
In patients with MDS/AML/MPN and del(20)(q),

some attempts have been made to establish the smallest
common deleted region (CDR) by cytogenetic and mo-
lecular genetic methods [6,7]: the results were partially
consistent and indicated a CDR of 250 Kb – 1.7 Mb
within the chromosome band 20q12. The introduction
of array methods, as microarray-based comparative
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genomic hybridization (a-CGH) and single nucleotide
polymorphism arrays (SNP-array), was expected to de-
fine more precisely one or more CDR, possibly contain-
ing genes relevant for the pathogenesis of myeloid
neoplasms. According to available literature this has not
been the case: different conclusions were drawn, e.g., by
Huh et al. [8] and Okada et al. [9].
We report here data obtained by means of a-CGH on

six SDS patients carrying the del(20)(q): four of them
were already partially described, and they are identified
in our laboratory and in our previous reports with their
Unique Patient Number (UPN) as 13, 14, 17, and 20.
Two of them, UPN 13 and 14, acquired the del(20)(q)
during the follow-up, after our previous report [10].
UPN 17 and UPN 20 showed also a clone in which the
del(20)(q) was further rearranged, with a complex pat-
tern including deletions of both the short and the long
arms and tiny duplications of the long arms [11]. The
other two, unreported, SDS patient are: UPN 65, a 13-
year-old male, with a diagnosis of SDS made at one year
of age, homozygous for the mutation 258 + 2 T > C of
the SBDS gene; UPN 68, a 19-year-old male, with diagnosis
of SDS at 10 years of age, with the mutations of the SBDS
gene 258 + 2 T >C/183-184TA >CT+ 258 + 2 T >C. One
patient with MDS was compared with the SDS patients:
he was a 5-year-old boy with a diagnosis of refractory
cytopenia with unilinear dysplasia (anaemia) (RCUD) in
whom an acquired del(20)(q) was found in BM, and was
defined as interstitial by a-CGH.
In this article we analyse the results obtained by a-

CGH in our six SDS patients, and we compare the loss
of chromosome 20 material with one patient affected
by MDS and with 102 patients with MDS/AML/MPN
collected from the literature, all investigated by a-CGH
or SNP-array.
Table 1 Cytogenetic and a-CGH results on BM cells of SDS an

Patient Karyotype FISH on m

UPN 13 46,XY,del(20)(q11.21q13.32)[2]/46,XY[2] 9/21 (42.8%

UPN 14 46,XY[49] 30/170 (17.
1 signal

UPN 17 46,XY,del(20)(q11.21q13.31)[5]/46,XY,der(20)del(20)(p)
del(20)(q)dup(20)(q)[20]/46,XY[6]

nae

UPN 20 46,XY,del(20)(q11.21q13.32)[18]/46,XY,der(20)del(20)(p)
del(20)(q)dup(20)(q)[6]/46,XY[2]

9/10 (90%)

UPN 65 46,XY,del(20)(q11.21q13.13)[6]/46,XY[13] 7/17 (41%)

UPN 68 46,XY,del(20)(q11.21q13.13)[2]/46,XY[14] na

MDS pt.f 46,XY,del(20)(q11.23q13.32)[7]/46,XY[4] 59/70 (84.3
1 signal

a1 signal indicates the presence of the del(20)(q); ba-CGH, array-based comparative
Valli et al. [13]; ena, not available; fpatient with myelodysplastic syndrome (RCUD).
Results
Table 1 summarizes all relevant cytogenetic data obtained
on BM cells at the time of a-CGH. In particular, the pro-
portion of cells bearing the del(20)(q) is evaluable from
chromosome analyses and from the results of fluorescent
in situ hybridization (FISH), also on nuclei, performed
with informative probes. In all cases, the percentage of ab-
normal cells was above the limit of detectability in a-CGH
assay [12].
The a-CGH results confirmed the interstitial deletion

of the long arms of chromosome 20 in the six SDS patient
and in the one affected by RCUD. They gave also evidence
of the further rearrangements of the del(20) in subclones
of the SDS patients UPN 17 and 20, but these changes
superimposed to the initial one were already discussed
[11] and are not object of the present report. The loss of
material of all patients is illustrated in Figure 1, and the
precise localization of the proximal and distal breakpoints
leading to the deletion are given in Table 1. The difference
among the six cases in shifting from the central line of
the a-CGH profiles (Figure 1) is due to the different
proportions of abnormal cells, which were known from
chromosome and FISH analyses, but were also reassessed
by calculating them from the a-CGH results themselves
[13] (Table 1).
The a-CGH results concerning the region of chromo-

some 7 where the SBDS gene is located were normal in
all patients, as expected.

Discussion
We reviewed from the literature 102 patients affected by
MDS (64 cases), AML (18), or MPN (20) with interstitial
del(20)(q), in whom the deletion was analyzed by a-CGH
or SNP-array [8,9,14-31]. We took into account only data
concerning the long arms, and we excluded from the
d MDS patients

itosesa FISH on nucleia a-CGHb: 20q loss bpc position
(% abnormal cells)d

) 1 signal 184/366 (50.3%)
1 signal

30 876 455 – 57 739 561 bp (55%)

6%) 68/470 (14,5%) 1 signal 31 163 090 – 35 309 353 bp (18.2%)

na 31 205 853 – 55 894 832 bp (46.9%)

1 signal na 31 294 381 – 57 252 304 bp (66.5%)

1 signal 191/619 (30.8%) 1 signal 30 157 286 – 49 497 910 bp (43%)

82/612 (13.4%) 1 signal 31 262 228 – 43 141 564 bp
45 244 728 – 47 373 129 bp (15.9%)

%) 450/581 (77.4%) 1 signal 35 144 198 – 56 526 166 bp (65.2%)

genomic hybridization cbp, base pairs; devaluated by the formula suggested by



Figure 1 a-CGH profiles of chromosome 20 in the 7 patients investigated. (A) The six SDS patients, identified by their unique patient
number (UPN), showing the extension of the interstitial deletion and the acquired loss of the EIF6 gene; (B) Extension of the interstitial deletion
in the RCUD patient: EIF6 is not included in the deleted region.
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subsequent analysis of breakpoints ten cases with complex
rearrangements and more than one region lost. In total,
92 cases were considered (56 MDS, 17 AML, 19 MPN):
they showed interstitial deletions originated by break-
points proximal to the centromere with base pair (bp)
position ranging from 29.400 to 54.356 Mb, and distal
ones with positions ranging from 34.338 to 62.966 Mb.
The size of the material lost ranged from 0.054 to
30.260 Mb (average 18.153). All literature data taken into
account are listed in the Additional file 1: Table S1. The
cases with the smallest deletions (less than 500 Kb) are
only five, and as the authors declare, they are not included
in the Database of Genomic Variants [32], but no available
data on parents exclude that they are in fact benign copy
number variations (bCNV). We remark that the compari-
son of the a-CGH/SNP-array data with results of chromo-
some analyses is very difficult because in many cases the
karyotype is very complex, with a number of ill-defined
changes almost incredible: this comparison obviously may
not be essential, but one should expect to have in most
cases chromosome analyses more readable, so that the
array data may better define chromosome anomalies
already detected.
The data available definitely do not permit to establish

a real and unique CDR. Some attempts have been made
to identify one or two CDR in the literature: in some
papers individual results of the single patients are given
[8,15], in other ones a possible CDR is discussed without
giving the individual data [33,34]. The CDRs so postu-
lated are not in fact supported by most reported cases.
The three smallest CDRs suggested by Milosevic et al.
[34], e.g., with loss of material between bp positions
33.500 and 36.170 Mb, concern segments which are in
fact lacking only in 52 out of the 92 cases that we col-
lected from the literature: so, this evaluation seems not
to be reliable. Only a rough conclusion is possible on
this point: a segment around the bands 20q11.23-q12
represent only a more common region of deletion, with
lacking segments of a size evaluable from 0.100 Mb [34]
to 10.2 Mb [15].
The RCUD case here reported lacks a segment of

21.382 Mb with breakpoint positions at 35,144,198 and
56,526,166 bp (Table 1, Figure 1), that is an interstitial
deletion quite similar to the ones more common in
MDS. In our SDS patients the pattern of the loss of ma-
terial is somehow more uniform than in MDS/AML/
MPN, with some considerable differences. In three of
the patients (UPN 13, 17, 20) the position of both the
proximal and the distal breakpoints were in small clus-
tered regions (Figure 1) of about 400 and 1800 Kb,
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respectively (Table 1). In these three cases the size of the
material lost was 26.863, 24.688 and 25.957 Mb. In the
other three patients (UPN 14, 65, 68) the proximal break-
point was always in the same region, with an overall vari-
ability of 1100 Kb (Table 1); on the contrary the distal
breakpoint was different: in UPN 14 the deletion was very
small (4.146 Mb, with distal breakpoint at 35.309 Mb pos-
ition) and had not been detected at chromosome analysis
(Table 1); in UPN 65 the distal breakpoint was significantly
different from UPN 13, 17 and 20, with the loss of a seg-
ment of 19.340 Mb (Figure 1, Table 1); in UPN 68 in fact
two interstitial deletions were shown to be present, and a
segment of 2.103 Mb was conserved between, being the
more distal breakpoint at 47.373 Mb position (Figure 1,
Table 1), with an overall loss of 14.007 Mb. So, the
proximal breakpoint leading to the interstitial del(20)(q)
in SDS is consistently in a position closer to the centro-
mere than the vast majority of the del(20)(q) in MDS/
AML/MPN. This implies in all SDS cases the loss of the
EIF6 gene, whereas this gene is lost only in 52 out of
the 92 cases of MDS/AML/MPN that we took into
account. Based on our a-CGH results on SDS patients,
it is possible to identify a ~4 Mb CDR located between
31,294,381 and 35,309,353 bp positions: it includes more
than fifty genes identified, and, up-to-date, the only gene
of this region that could be associated with SDS molecular
pathway is EIF6.

Conclusion
The loss of chromosome 20 long arm material in MDS/
AML/MPN is highly variable with no identifiable CDR,
whereas in SDS the loss is more uniform: it seems to be
often almost identical (3/6 among our patients), and this
is probably also the case of most patients from the litera-
ture based on standard chromosome analyses, according
to the morphology of the del(20)(q) which is available for
some of the reported cases, and to the fact that it is prob-
able that more subtle deletions could escape detection, as
was the case of our patient UPN14. In some SDS patients
the loss of material may be smaller, due to different distal
breakpoints, but the proximal one remains in the same re-
gion, always closer to the centromere than the EIF6 gene
localization. We already postulated that the loss of EIF6,
as consequence of the acquired del(20) in BM, plays a spe-
cific pathogenetic role with a lower risk of transformation
into MDS/AML in SDS patients [5].

Methods
Chromosome analyses were performed on BM with rou-
tine methods. FISH analyses were made on metaphases
and on interphase nuclei by standard techniques with the
following probes, informative for the deletion detected:
RP11-17 F3 (UPN 13, 20, 65, and the RCUD patient),
CTD-2550C9 (UPN 13), CTD-3092 L7 (UPN 14).
The a-CGH was performed with the 244 K genome-
wide system (Agilent Technologies Inc., Santa Clara, CA,
USA), according to the manufacturer’s instruction on
DNA from BM sampled at the same dates of cytogenetic
results summarized in Table 1. All map positions in the re-
sults refer to the genome assembly map hg19; as to litera-
ture data, we converted to map hg19 also the positions
originally identified on the basis of preceding maps.

Additional file

Additional file 1: Table S1. Table with data on the position of proximal
and distal breakpoints and on the size of material lost in the 92 cases of
myelodysplastic syndrome (MDS), acute myeloid leukaemia (AML), and
myeloid neoplasms (MPN) from the literature taken into account.
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