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A specific family of interspersed repeats (SINEs)
facilitates meiotic synapsis in mammals
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Abstract

Background: Errors during meiosis that affect synapsis and recombination between homologous chromosomes
contribute to aneuploidy and infertility in humans. Despite the clinical relevance of these defects, we know very
little about the mechanisms by which homologous chromosomes interact with one another during mammalian
meiotic prophase. Further, we remain ignorant of the way in which chromosomal DNA complexes with the
meiosis-specific structure that tethers homologs, the synaptonemal complex (SC), and whether specific DNA
elements are necessary for this interaction.

Results: In the present study we utilized chromatin immunoprecipitation (ChIP) and DNA sequencing to
demonstrate that the axial elements of the mammalian SC are markedly enriched for a specific family of
interspersed repeats, short interspersed elements (SINEs). Further, we refine the role of the repeats to specific
sub-families of SINEs, B1 in mouse and AluY in old world monkey (Macaca mulatta).

Conclusions: Because B1 and AluY elements are the most actively retrotransposing SINEs in mice and rhesus
monkeys, respectively, our observations imply that they may serve a dual function in axial element binding; i.e., as
the anchoring point for the SC but possibly also as a suppressor/regulator of retrotransposition.
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Background
The formation of haploid gametes is dependent on seve-
ral major processes that occur during meiotic prophase;
i.e. following genome replication homologs must pair,
synapse, and exchange material in advance of segrega-
tion at anaphase I [1-5]. These processes are aided by
the formation of the synaptonemal complex, a tripartite
structure consisting of two axial elements (AEs) and a
transverse filament that brings the AEs into close align-
ment [6-8]. Chromosomal DNA is thought to bind to
the SC via the AE protein SYCP3 [7,9,10]. However, pre-
vious attempts to identify mammalian DNA sequences
that seed this interaction involved limited sequencing
efforts [11,12] thus; it is not yet clear whether specific
DNA sequences are necessary for formation of the SC.
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Results
Mouse ChIP
We assessed this interaction in male mice, utilizing ChIP
followed by DNA sequencing to determine which, if any,
DNA elements bind with SYCP3 (either directly or in a
protein complex that includes SYCP3) during the forma-
tion of the SC. Specifically, we isolated seminiferous tu-
bules from the testes of C57BL/6J male mice and pulled
down the protein-DNA complex using an antibody against
SYCP3. Due to the small amount of starting testis mate-
rial, DNA yields were limited (0.5-2 ng/ul). Thus, we first
employed whole genome amplification (WGA) of DNA
from test and mock pull-downs to generate sufficient
DNA for subsequent subcloning efforts. Subclones were
sequenced by ABI sequencing and aligned against the gen-
ome assembly (NCBI37/mm9, July 2007); we only accep-
ted clones with at least 98% or better sequence identity to
the mouse genome assembly [13].
In total, we analyzed 70.9 Kb from 239 test (anti-SYCP3

ChIP) subclones and 55.3 Kb from 180 control (mock
pull-down) subclones (Table 1; Figure 1a). The types of
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Table 1 Distribution of different categories of DNA, based
on sequence analysis of subclones from test (SYCP3) and
control (no antibody) ChIP experiments of male

DNA type Test no. of
base pairs (%)

Control no. of
base pairs (%)

Mouse genome
ave. (%)

SINEs 9483 (13.4) 5065 (9.2) 8.2

LINEs 13023 (18.3) 10832 (19.6) 19.2

LTRs 10422 (14.7) 9959 (18.0) 9.9

DNA Elements 533 (0.8) 360 (0.6) 0.9

Unclassified/
other repeats

205 (0.3) 58 (0.1) 0.4

Unique sequence 37325 (52.6) 29114 (52.6) 61.4

Total Bp
Sequenced

70991 (100.1) 55388 (100.1) 100.0
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sequence features contained within the test and con-
trol sequences were compared by placement against the
mouse genome assembly and RepeatMasker analysis
[13,14]. Only one category of DNA, the SINE inter-
spersed repeat element, was over-represented in the test
group, accounting for 13.4% of bp in the test group
but only 9.2% of bp in the control group (p<0.0001;
Figure 1a). Thus, these results suggest a preference for
Figure 1 Sequence analysis from C57BL/6J male mice. Sequence analy
following test (SYCP3) or control (no antibody) ChIP pull-downs. Results are
base pairs sequenced for: (a) each of six categories of DNA, based on sequ
SINE elements, based on 454 genome sequencing. Asterisks indicate signifi
are also provided in Tables 1 and 2.
SINEs in the formation of the AEs but, because of the
relatively limited amount of sequence data, we were
unable to determine whether specific sub-families of
SINEs were responsible for this association.

Mouse ChIP-Seq
Accordingly, we conducted a second set of experiments
to determine which, if any, of the five mouse SINE fa-
mily members – B1, B2, B3, B4/RSINE, ID and MIR/
MIR3 – might specifically interact with SYCP3. For this
analysis, we utilized the Roche 454 GS FLX pyrosequen-
cing platform, enabling us to generate a much larger
data set. In total, we analyzed 10.3 Mb of test sequence
and 22.2 Mb of control sequence reads (Table 2), and
confirmed the major finding from the previous subclon-
ing experiment; SINEs were over-represented in the test
group (15.2% of bp) by comparison with the control
group (13.1% of bp). Analyses of the individual SINE
families demonstrated that the effect was attributable to
B1 elements (Figure 1b). Taken together, these studies
indicate that one type of interspersed repeat element, B1
SINEs, are preferentially utilized as binding sites in the
formation of the axial elements of the synaptonemal
complex.
sis of DNA from seminiferous tubules of C57BL/6J male mice, amplified
expressed as the proportion of base pairs observed/overall number of
ence analyses of subcloned and (b) each of five categories of mouse
cant differences between test and control groups at p<0.0001; data



Table 2 Distribution of different categories of DNA based
on 454 GS FLX Titanium sequencing from test (SYCP3)
and control (no antibody) ChIP experiments of male mice

DNA type Test no. of
base pairs (%)

Control no. of
base pairs (%)

Mouse genome
ave. (%)

SINEs, Total 1571293 (15.3) 2896767 (13.1) 8.2

SINE: Alu/B1 578758 (5.6) 856113 (3.9) 2.7

SINE: B2 481108 (4.7) 958107 (4.3) 2.4

SINE: B4 442437 (4.3) 908997 (4.1) 2.4

SINE: ID 27144 (0.3) 55704 (0.3) 0.3

SINE: MIR 41623 (0.4) 116746 (0.5) 0.6

LINEs 2022182 (19.6) 3930338 (17.7) 19.2

LTRs 1354824 (13.2) 2820553 (12.7) 9.9

DNA Elements 85639 (0.8) 221236 (1.0) 0.9

Unclassified/
other repeats

44615 (0.4) 97630 (0.4) 0.4

Unique
sequence

5220735 (50.7) 12236884 (55.1) 61.4

Total Bp
Sequenced

10299288 (100.0) 22203408 (100.0) 100.0
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Macaque ChIP
Next, we were interested in determining whether specific
subsets of SINEs were important in SC formation in
other male mammals. Thus, we conducted an initial set
of subcloning experiments in the male rhesus macaque
(Macaca mulatta), examining seminiferous tubules and
using similar methodology to that described above. Sub-
clones were sequenced by ABI sequencing and aligned
against the UCSC rhesus macaque genome assembly
(MGSC Merged 1.0/rheMac2, Jan. 2006) and analyzed
by RepeatMasker [13,14]. In total, we analyzed 46.6 Kb
from 194 test subclones and 7.3 Kb from 35 control
(mock pull-down) subclones (Table 3; Figure 2a). The
small set of control subclones were further analyzed and
Table 3 Distribution of different categories of DNA based
on sequence analysis of subclones from test (SYCP3) and
control (no antibody) ChIP experiments of male macaque

DNA type Test no. of
base pairs (%)

Control no. of
base pairs (%)

Macaque
genome ave. (%)

SINEs 7729 (16.6) 595 (8.1) 13.1

LINEs 8147 (17.5) 1366 (18.6) 20.4

LTRs 3866 (8.3) 678 (9.2) 8.3

DNA Elements 864 (1.9) 97 (1.3) 3.0

Unclassified/
other repeats

0 (0.0) 0 (0.0) 0.2

Unique
sequence

26040 (55.8) 4624 (62.8) 55.0

Total Bp
Sequenced

46646 (100.0) 7360 (100.0) 100.0
confirmed that the sequences were consistent with geno-
mic averages (Table 3; Figure 2a). Similar to the results
from male mice, SINEs were the only DNA category
over-represented in the test group, accounting for 16.6%
of bp in the test but only 8.1% of bp in controls (p<0.0001;
Figure 2a). Subsequent analyses of the individual SINE
families demonstrated that the effect was primarily at-
tributable to one class of SINEs; i.e., AluY elements,
although AluS elements were also elevated (Table 4;
Figure 2b). Thus, it appears that SINEs and, in par-
ticular AluYs, serve as binding sites for axial element
proteins during the formation of the synaptonemal com-
plex in rhesus males.

Discussion
Taken together, these results indicate that the youngest
and most active SINE subfamilies are intertwined with
the establishment of the mammalian SC. However, be-
cause of the complex nature of the meiotic prophase
axis, we cannot be certain that SINEs complex exclu-
sively with SYCP3. That is, it is thought that the mature
axis is comprised of several components: an underlying
scaffold, possibly similar to that present in mitotic cells
[15], multiple complexes of cohesin proteins that link sis-
ter chromatids and possibly homologs [16], and meiosis-
specific proteins such as SYCP3 that constitute the axial/
lateral elements proper. Since chromosomal loops are evi-
dent along the length of the underlying scaffold even in
the absence of cohesin and axial/lateral element proteins
[17,18], it is possible that SINEs localize to the base of the
loops regardless of the presence of SYCP3. Nevertheless,
while we cannot be certain of the specific mechanism by
which SINES interact with the SC, our results provide evi-
dence of a new meiotic function for repetitive elements.
From studies of multiple organisms, it is clear that repeti-
tive sequences are important in the earliest events of mei-
otic prophase; e.g., telomeric repeats facilitate homolog
interactions by formation of the meiotic bouquet [19-27],
and studies of C. elegans [28] and Drosophila [29], among
others, implicate other specific repetitive elements in the
pairing process. However, little has been known of the
possible contribution of specific DNA sequences to the
formation of the synaptonemal complex in mammals. Our
results suggest that a specific category of interspersed re-
petitive elements plays a role in linking DNA to the axial
elements of the mammalian SC. These results extend pre-
vious suggestions that rodent axial elements might be
bound by various types of repeats [11,12], and indicate
that primate males may operate similarly. Further, there
may be an evolutionary advantage to this arrangement.
SINE elements are dependent upon long interspersed ele-
ments for retrotransposition and have evolved in tandem.
SINE-LINEs have been some of the most successful ele-
ments, both in terms of their numbers within genomes



Figure 2 Sequence analysis from rhesus macaque males. Sequence analysis of DNA from seminiferous tubules of rhesus macaque males,
amplified following test (SYCP3) or control (no antibody) ChIP pull-downs. Results are expressed as the proportion of base pairs observed/overall
number of base pairs following 454 genome sequencing for: (a) each of six categories of DNA and (b) each of three categories of Alu elements.
Asterisks indicate significant differences between test and control groups at p<0.0001; data are also provided in Tables 3 and 4.
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and their ubiquitous presence across lineages. Virtually
all mammals have been shown to have active LINE-
SINE retrotransposons and although long hypothesized,
no requisite biological function has been discovered to
counterbalance the mainly disrupt effects of retrotranspo-
sition and prevent SINE extinction [30]. It is intriguing
to hypothesize that mammalian SINEs may have been ini-
tially sequestered and silenced in the SC protein matrix,
eventually becoming a requisite component for proper SC
formation and meiosis. Given that we observe enrich-
ments for only the most recent active SINE families, the
ongoing evolution of SINEs may be intertwined with the
evolution of the mammalian meiotic machinery.
Table 4 Distribution of different categories of Alu repeats
from test (SYCP3) ChIP experiments of male macaque

DNA type Test no. of
base pairs (%)

Macaque
genome ave. (%)

AluY 1793 (3.8) 1.4

AluS 3048 (6.5) 6.6

AluJ 931 (2.0) 2.7

Alu (total) 5772 (12.4) 10.7

Total Bp sequenced 46646
Conclusions
Because B1 and AluY elements are the most actively
retrotransposing SINEs in mice and rhesus monkeys,
respectively, our observations imply that they may serve a
dual function in axial element binding; i.e., as the anchor-
ing point for the SC but possibly also as a suppressor/
regulator of retrotransposition.

Methods
Sample acquisition
C57BL/6J inbred mice were maintained in a pathogen-free
breeding colony at Washington State University (WSU).
Protocols for the care and use of the animals were ap-
proved by the WSU Animal Care and Use Committee and
were in accordance with the National Institute of Health’s
standards established by the Guidelines for the Care and
Use of Experimental Animals. All procedures were ap-
proved by the WSU Institutional Review Board. Testes
from sexually mature rhesus macaques (Macaca mulatta)
were obtained from animals assigned to surgery or nec-
ropsy for other purposes, and housed at the California
National Primate Research Center (CNPRC) at the Uni-
versity of California, Davis. The CNPRC is fully accredited
by the Association for Assessment and Accreditation of
Laboratory Animal Care (AAALAC).
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Chromatin immunoprecipitation (ChIP) and whole
genome amplification (WGA)
ChIP assays were conducted utilizing seminiferous tubu-
les extracted from one C57BL/6J male mouse and four
Macaca mulatta males (one testis each for test and control
pull-downs), and using the USB ChIP Assay Kit; SYCP3
antibody was obtained from Santa Cruz Biotechnology
(Cat. SC-33195). WGA was performed on immunoprecipi-
tated DNA that was first purified utilizing USB’s PrepEaseW

DNA Clean-Up Kit, with the subsequent amplification per-
formed using the GenomePlexW Complete (WGA2) Kit.

Subcloning and sequencing
WGA-derived DNA from test and control ChIP experi-
ments was subcloned into pGEMW-T Easy Vectors using
standard recombinant DNA techniques. Recombinant
plasmids were transformed into JM109 high efficiency
competent cells and plasmid DNA isolated using the
WizardW SV 96 Plasmid DNA Purification System. The
plasmid inserts were sequenced using BigDyeW Termina-
tor v3.1 Cycle Sequencing and were run on a 3730 DNA
analyzer. The 454 GS FLX Titanium chemistry platform
was employed to generate in-depth DNA sequence cover-
age of SYCP3 and control WGA-derived DNA from test
and control pull-downs. GS 20 library construction and
sequencing were performed following standard protocols
[31,32] with one major modification; WGA-derived DNA
was not sheared but was directly sequenced.

Sequence analysis
Mouse and macaque subclone insert sequence reads grea-
ter than 50 bp in length were aligned to reference gen-
omes (mm9 or rheMac2) with BLAT [33] to determine
their best placement, representing the position of the
alignment with the greatest sequence similarity (at least
98%) and length (at least 90% of the read). In the case of
sequences with multiple best placements, a single best
placement was randomly chosen. The repetitive content
within each best placement was extracted from the under-
lying reference genome RepeatMasker annotation.
454 GS FLX trimmed reads greater than 25 bp were

treated as above except the best placement sequence
similarity had to be at least 95%. The repetitive content
within each best placement was extracted from the under-
lying reference genome RepeatMasker output (mm9) and
assigned to the read. The assigned repeat content of the
reads was then tallied and tabulated at both the level of in-
dividual repeat and repeat family using custom Perl scripts
(Tables 1–4). Standard chi-square analyses were used to
determine any over-representation of interspersed repeats
between the test sequences and expectation.
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