
REVIEW Open Access

Cytogenetic contribution to uniparental disomy
(UPD)
Thomas Liehr

Abstract

Uniparental disomy (UPD) is often considered as an event to be characterized exclusively by molecular genetic or
epigenetic approaches. This review shows that at least one third of UPD cases emerge in connection with or due
to a chromosomal rearrangement. Thus, additional (molecular) cytogenetic characterization of UPD cases is essen-
tial. Up to now > 1,100 UPD cases detected in clinical, non-tumor cases are reported in the literature. Recently,
these cases were summarized in a regularly updated, freely available online database http://www.med.uni-jena.de/
fish/sSMC/00START-UPD.htm. Based of this, here the presently known imprinting syndromes, the chromosomal
contribution to UPD phenomenon, and the cytogenetic subgroups of UPD, including cases with normal, abnormal
balanced or unbalanced karyotype (like e.g. small supernumerary marker chromosomes and Robertsonian transloca-
tions) and segmental UPD are reviewed. Furthermore, chromosome fragmentation as a possible mechanism of tri-
somic rescue is discussed, which might help to explain the observed 1:9 rate of maternal versus paternal UPD
present in cases with original trisomic karyotypes. Overall, as UPD is more but an interesting rarity, the genetic
background of each “UPD-patient” needs to be characterized besides by molecular methods, also by molecular
cytogenetics in detail.

Introduction
Uniparental disomy (UPD) is the presence of a chromo-
some pair derived only from one parent present in a
disomic cell line [1]. When one of the first proven UPD
case was published [2] an editorial in the same journal
issue commented this by the words: < it seems unlikely
that UPD will turn out to be anything but an interesting
rarity > [3]. However, today, some 20 years later, there
are > 1,100 reports on UPD cases [1] and what was con-
sidered initially as something exotic is nowadays an
important diagnostic [4] and even prognostic factor for
special syndromes [5,6]. Also UPD is able to support the
localization of monogenic disorder genes (e.g. [7], see
also [1]) and was demonstrated to play a role in tumori-
genesis, as reviewed by [8].
The concept of UPD was introduced in 1980 into

medical genetics by Eric Engel [9]. In 1987 the first case
of UPD proven by molecular methods was described
[10]. However, cases having a UPD were reported before
[11-14].

In theory there are 48 possible uniparental chromoso-
mal pairs, plus 2 whole genomic variants of UPD which
could exist. Up to present no maternal UPD was
reported for chromosome 19 (and Y), and no paternal
UPD for chromosomes 4, 17, 18 and 19 [1]. UPD can
be detected based on cytogenetic data and chromosomal
heteromorphisms or rearrangements [10-14], microsatel-
lite analysis [15], methylation test [16] or SNP-bases
array-comparative genomic hybridization [15]. Also
molecular cytogenetics taking advantage of the so called
copy number variations (CNV) within the human gen-
ome can be used to characterize UPD [17]. Interestingly,
UPD is in at least 30% of the case observed together
with a chromosomal aberration [1]. Thus, (molecular)
cytogenetics is essential when concentrating on this
putatively exclusive molecular genetic topic.
This review focuses on UPD present in clinically nor-

mal and clinically abnormal persons. UPD cases nowa-
days repeatedly reported as acquired, tumor-specific
epigenetic alteration [8] are not subject of this paper.
Basis of this review is a freely available and regularly
updated online database including all published UPD-
cases [1].Correspondence: i8lith@mti.uni-jena.de
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Basic types of UPD
According to [18] there are three basis types of UPD.
UPD for the entire chromosomal complement can be
present as paternal or maternal UPD (UPDpat/
UPDmat). The first leads to complete hydatidiform
mole, the second one induces benign cystic ovary. For
UPDpat exceptional cases are reported with mosaic
state of uniparental and biparental inheritance but no
triploidy; more frequently UPDpat cell lines with a tri-
ploid one are seen as partial hydatidiform mole [1,18].
UPD for a complete chromosome can appear due to

gamete complementation, trisomic rescue (with or with-
out formation of a small supernumerary marker chro-
mosome = sSMC), monosomic rescue, mitotic error in
connection with a Robertsonian or other translocation,
isochromosome formation, deletion and duplication
[18]. Finally, segmental UPD can arise due to a postzy-
gotic somatic recombination between maternal and
paternal homologue, or in connection with numerical
and/or structural chromosomal aberrations [18].

Hetero- and isodisomy, imprinting and
hemizygosity
Two subtypes of UPD can be recognized by molecular
analysis. The one is called heterodisomy (hUPD) and is
defined as inheritance of both chromosomes from one
parental pair. Besides there can be isodisomy (iUPD), i.e.
inheritance of two copies of the same chromosomes from
one parent. hUPD and iUPD can cause disease if affecting
a gene underlying genomic imprinting (= expression of a
gene which depends on parental origin). iUPD can
further and independent of imprinting, result in func-
tional reduction to hemizygosity and thus can cause a
recessive disease to occur in the offspring of one carrier
patient. Apart from monosomic rescue cases, which
should always be iUPD, hUPD and iUPD can be observed
as mixed forms mostly. Overall, mainly meiotic I or II
errors and/or postzygotic events contribute to UPD for-
mation [18]. Additionally, as Albert Schinzel stated < the
incidence of meiotic nondisjunction increases with
advanced maternal age, maternal UPD most often is het-
erodisomy while in paternal UPD isodisomy prevails, and
no correlation with paternal age is found > [19].
As “imprinting disorders” are nowadays regarded and

registered in the database Online Mendelian Inheritance
of Man (OMIM) [20]:

- patUPD(6): transient neonatal diabetes (TND;
OMIM #601410),
- matUPD(7): Silver Russel syndrome (SRS; OMIM
#180860),
- patUPD(11): Beckwith-Wiedemann syndrome
(BWS; OMIM #130650),

- matUPD(14): Temple syndrome (TS; see OMIM
*605636 and #176270),
- patUPD(14): paternal UPD(14) syndrome (patUPD
(14); OMIM #608149),
- matUPD(15): Prader Willi syndrome (PWS; OMIM
#176270), and
- patUPD(15): Angelman syndrome (AS; OMIM
#105830).

Meiotic and mitotic origin of the UPD has been
shown to be assorted in different imprinting disorders.
Meiotic origin is e.g. suggested in 58% of matUPD(7)-,
in 89% of matUPD(15)- and in 16% in patUPD(15)-
cases [21].

Frequency of UPD
According to the literature the frequency of UPD in
newborn is considered to be about 1 in 3,500 which
equals a rate of 0.029% [21]. However, the rate for a
similar rare human group of disorders, in which UPD
also can be present, i.e. the patients with small supernu-
merary marker chromosomes (sSMC), is only 0.044% in
newborn [22]. At present almost 4,000 sSMC cases [23]
and only ~1,100 UPD [1] cases are reported in the lit-
erature. Thus, the rate of UPD in human population
might be even lower than suggested, maybe 1 in 5,000
or less.
However, in the above mentioned “imprinting disor-

ders” the UPD rates are much higher. In SRS about 5%
of the cases show a matUPD(7). For AS a UPD rate of
7% [24] and for PWS of 25% is given [24,25]. BWS has
segmental UPD(11p) in 20% of the cases. In TND a
patUPD(6) is reported in 40% of the patients. > 95% of
TS cases show matUPD(14) and for patUPD(14) syn-
drome no cases without UPD are reported yet [24]. Also
important to state is that UPD seems not to be pro-
moted by assisted reproductive technologies (ART),
while imprinting defects are very well found more fre-
quently after application of ART [24].
As summarized in Table 1 the male to female ratio of

UPD carriers overall is 1:1. Only for matUPD(4) and
patUPD(6) this ratio was abnormal (Tab. 1). For
matUPD(4) at present eight cases are reported, seven of
which are male. In patUPD(6) only seven of the nine-
teen cases are female. Further cases have to be studied
to be able to draw a final conclusion if these data are
subject to bias or not.

Detection of UPD
In one third of clinical UPD cases this genetic defect is
uncovered due to, or in connection with a chromosomal
abnormality [1]. In such cases cytogenetic analysis was
performed because in the overwhelming majority of the
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cases with a UPD clinical abnormalities are present.
Only some 50 cases with UPD but no clinical abnormal-
ities are reported in the literature; they were found
more or less by chance or due to repeated abortions in
a family with chromosomal rearrangement [1].
As the karyotype is crucial for the understanding of

UPD formation, in the following the reported UPD-
cases are grouped into: 1) Cases with proven or sug-
gested normal karyotype; 2) cases with abnormal
balanced karyotype; 3) cases with abnormal unbalanced
karyotype, subdividing in a) cases with small supernu-
merary marker chromosomes (sSMC) and b) cases with
imbalances except for sSMC; and 4) cases with segmen-
tal UPD. The percentage rates given below are summar-
ized in Fig. 1 and deduced from [1].

Cytogenetic subgroups displaying UPD
1) UPD-cases with proven or suggested normal karyotype
65% of the reported UPD cases have a cytogenetically
proven or suggested normal karyotype of 46, XX or 46,
XY (Fig. 1). Surprisingly, > 50% of these cases are

published without having cytogenetics done. This is
especially critical in UPD of one of the chromosomes
13, 14, 15, 21 or 22 (acrocentric ones). Presence of a
Robertsonian translocation is known to contribute to
the formation of this rare kind of mitotic error and can
assist to explain familial cases of e.g. PWS or AS [26].
Between 0.6% and 3% of Robertsonian translocations are
associated with UPD [27]. However, over 10% of the
acrocentric chromosome derived UPDs summarized in
[1] have a Robertsonian translocation.

2) UPD-cases with abnormal balanced karyotype
Abnormal balanced karyotypes in connection with UPD
can be formed as isochromosomes (as described for
chromosomes 1, 2, 4, 7 and 9), inversions (reported for
chromosomes 3 and 4), balanced translocations (see
chromosomes 7, 15) and Robertsonian translocations
(chromosomes 13, 14, 15, 21 and 22). Overall, such
abnormal balanced karyotypes are reported in 8% of
published UPD cases [1] (Fig. 1).

3) UPD-cases with abnormal unbalanced karyotype
16% of reported UPD cases are observed in connection
with an unbalanced karyotype. About a quarter of those
cases were identified due to the presence of an sSMC
[1,23] (Fig. 1).
3a) UPD-cases with sSMC
All reported sSMC cases are summarized at http://www.
med.uni-jena.de/fish/sSMC/00START.htm[23]. At pre-
sent there are > 3,900 entries with sSMC; ~3,300 of
those are reported not in connection with a Turner syn-
drome. Thus, at least 1.3% of those sSMC cases present
with a UPD. This rate would be higher if derivative-
chromosome-22-/Emanuel-syndrome would be included;
however, to the best of our knowledge no reliable quan-
titative data on parental UPD(22) origin is available
here. Among the reported UPD cases sSMC were pre-
sent in 4%. As up to present only de novo sSMC were
associated with a UPD, trisomic rescue is the most likely
reason for their formation. This assumption was also
already proven for some UPD cases (e.g. [28]).
3b) UPD-cases with imbalances except for sSMC
Trisomic rescue can not only lead to sSMC formation
but also, more often, to mosaic formation like mos 47,
XN, + 16/46, XN; in such cases a UPD, in the given
example a UPD 16, can be present in the cells with nor-
mal karyotype. Over 100 such cases are reported, at pre-
sent for chromosomes 2, 4, 6-7, 9-17 and 20-22.
Besides, imbalances like additional sex chromosomes,
pseudodicentric chromosomes, unbalanced transloca-
tions, partial deletions and duplications are reported in
the remainder ~25 cases. In UPD-cases with additional
imbalances it is hard to distinguish between a possible
effect of UPD and of the observed chromosomal

Table 1 Male to female ratio in maternal and paternal
UPD for human autosomes.

matUPD patUPD

Chromosome Male female male female

1 6 5 6 9

2 9 7 6 4

3 1 4 0 0

4 7 1 0 0

5 0 1 1 1

6 3 3 12 7

7 17 20 6 3

8 2 3 1 1

9 4 8 0 0

10 3 1 0 0

11 2 1 7 8

12 1 3 0 1

13 2 3 3 3

14 20 24 12 15

15 36 25 23 23

16 13 13 0 2

17 1 2 0 0

18 0 1 0 0

19 0 0 0 0

20 3 2 1 0

21 3 1 1 3

22 3 5 2 1

Overall 136 133 81 81

As not for all reported UPD cases the gender is given in the literature only
413 cases summarized in [1] could be included in this table.
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imbalance on the clinical phenotype. Also, if no chro-
mosomal imbalance has been detected except for UPD,
there still can be aberrant cell lines present in other
than the studied body tissues. This topic is matter of
discussion especially for matUPD(16) [29]. Additionally,
it is noteworthy that in the here discussed mosaic cases
with a trisomic cell line the disomic cells have a UPD
and the trisomic ones not. However, there are mosaic
cases with UPD reported especially for cases with BWS,
but also other chromosomes [1]. Mostly these can be
acknowledged only by molecular approaches, as cyto-
genetically the different cell lines do not differ.

4) Segmental UPD-cases
At present there are 122 reports on segmental UPD.
~65% of those cases are provided by Beckwith-Wide-
mann syndrome and segmental paternal UPD 11p [1].
The remainder cases were found in connection with
chromosomal rearrangements in ~12%, while a normal
or no karyotype is reported in 20 and 16 cases, respec-
tively. Overall, 11% of all known UPD cases are of the
segmental type (Fig. 1).

Chromosomal contribution to UPD in autosomal
chromosomes
In Fig. 2 the chromosomal contribution to UPD
together with matUPD and patUPD is summarized.
Chromosomes 15, 11, 7, 14 and 16 are most often

involved in UPD formation, chromosome 15 being by
far the most often observed one, which might possibly
reflect in parts an ascertainment bias. Chromosomes 1,
2 and 6 have a moderate frequency of UPD, while the
remainder chromosomes are sparsely contributing to
UPD.
Kalouseck and Barrett [30] suggested that the fre-

quency with which various chromosomes are involved
in placental aneuploidy could correspond to the inci-
dence of specific chromosomal trisomies in spontaneous
abortions. Thus, a data from a review on chromosomal
contribution in spontaneous abortion [31] was com-
pared with chromosomal contribution of UPD as known
by now, excluding segmental UPD cases [1]. However,
as visible in Fig. 3 there is no positive correlation, but, if
at all a negative one. If true, this would possibly mean
that chromosomes which tend to form UPD are found
less frequently in abortions. Further studies are required
to substantiate this possibility.

Maternal and paternal UPD
Trisomic rescue as reason for UPD is present in most of
the sSMC- and of the mosaic-cases having trisomy in a
subset of their cells. Overall, about 150 such cases are
available in the literature. The fact that only 4 of 45
sSMC- and 9 of 107 mosaic-carriers show a paternal
UPD, i.e. only 8.6%, must have a biological background.
It was already speculated that this might be due to the

Figure 1 Cytogenetic subgroups displaying matUPD, patUPD and UPD in general . Abbreviations: matUPD = maternal UPD;
patUPD = paternal UPD.
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higher frequency of aneuploidy in oocytes than in sperm
[32]. Chromosome anomalies are common in human
gametes, with approximately 21% of oocytes and 9% in
sperm [33]. In implanted embryos the rate of trisomies
was estimated to be 16% [34]. Trisomic rescue is the
result of viable postzygotic non-disjunction or anaphase
lag event occurring during early embryogenesis which
can involve either trophectoderm or extraembryonic
mesoderm progenitors or both of them [35]. Los and
coworkers added to that in 1998 the theory of chromo-
some demolition as an alternative correction mode [36].
As UPD and sSMC formation can go together, chromo-
some demolition would be a process of deliberate frag-
mentation and/or removal of one of the sets of three
chromosomes during ana- or metaphase. Such chromo-
some fragmentation is seen in Howel Joly bodies [37]
and a case with a del(5)(q31) recently reported could be
interpreted as incomplete chromosome fragmentation

[38]. Also the recently recognized phenomenon that
“developmental chromosome instability” is significantly
increased during embryonic stage and affects different
tissues is to be mentioned in this context [39]. Los and
coworkers [36] < consider trisomic rescue to consist of
one correction event in the first to fourth postzygotic
cell division with a subsequent unknown distribution of
trisomic and disomic cells among the progenitor cells of
the inner cell mass and trophoblast compartment until
16-cell stage >. Cellular selection during following for-
mation of placenta and early embryogenesis would help
as a result to ensure the presence of a numerically
balanced chromosome complement in the developing
fetus.
Together with the recent findings that there are inher-

ent epigenetic differences between the paternal and
maternal pronuclei in early cleavage stage embryos [40]
this led us to suggest the following idea to explain the

Figure 2 Chromosomal contribution to UPD. Maternal (matUPD) and paternal (patUPD) are presented in different colors. Abbreviations:
# = number; chr. = chromosome.

Figure 3 Chromosomal distribution of UPD compared to that found in abortions. Abbreviations: # = number; chr. = chromosome;
n = quantity of cases.
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above mentioned 1:9 rate of matUPD versus patUPD.
Besides the fact that aneusomies are more likely to be
contributed from the female side [32] also another kind
of enzymatic content in male and female derived pro-
nuclear compartment could be important. The oocyte
has obviously a less active machinery to eliminate chro-
mosomal mistakes than the spermatocyte. Thus, at stage
of pronuclei an elimination of a paternally derived addi-
tional chromosome could be more likely than of a
maternally derived one. In concordance herewith, evi-
dence for the existence of a chromosome counting
mechanisms in zygote and early embryogenesis was
already provided [41].

Conclusion
Based on a regularly updated case collection on clinical
UPD cases [1] meta-analyses of the presently available
case-reports are now possible. Here a first attempt is
presented. Similar as stated for the sSMC database [23]
in [42] the present UPD-cases collected [1] are ascer-
tainment-biased, however, it is the only data available by
now. Of the 48 possible uniparental chromosomal pairs,
plus 2 whole genomic variants of UPD still the first
reports for mat UPD(19) and patUPD(4), patUPD(17),
patUPD(18), and patUPD(19) are awaited. However, the
rate of UPD might be lower than that of sSMC, and
thus, lower than predicted [21]. Trisomic rescue and
UPD should be highly actual fields of research, as the
understanding of nuclear architecture and interphase
cell regulation is nowadays considered as important for
epigenetic gene regulation [43]. Thus, interphase cytoge-
netic tools like fluorescence in situ hybridization based
banding approaches including multicolor banding could
also be of interest in UPD-research [43-46].
What cannot be stressed enough is that the genetic

background of a ‘UPD-patient’ needs to be character-
ized, besides by molecular methods, also by (molecular)
cytogenetics as in one third of the cases chromosomal
rearrangements are in connection with the event of a
UPD!
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