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Abstract
WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities and mental retardation) and
Potocki-Shaffer syndrome are rare contiguous gene deletion syndromes caused by deletions of the
11p14-p12 chromosome region.

We present a patient with mental retardation, unilateral cataract, bilateral ptosis, genital
abnormalities, seizures and a dysmorphic face. Cytogenetic analysis showed a deletion on 11p that
was further characterized using FISH and MLPA analyses. The deletion (11p13-p12) located in the
area between the deletions associated with the WAGR and Potocki-Shaffer syndromes had a
maximum size of 8.5 Mb and encompasses 44 genes. Deletion of WT1 explains the genital
abnormalities observed. As PAX6 was intact the cataract observed cannot be explained by a
deletion of this gene. Seizures have been described in Potocki-Shaffer syndrome while mental
retardation has been described in both WAGR and Potocki-Shaffer syndrome. Characterization of
this patient contributes further to elucidate the function of the genes in the 11p14-p12
chromosome region.

Background
The clinical association of Wilms' tumor, aniridia, geni-
tourinary abnormalities and mental retardation (WAGR)
is a contiguous gene deletion syndrome caused by a dele-
tion on the short arm of chromosome 11. The syndrome
is caused by haploinsufficiency for the PAX6 gene (caus-
ing aniridia) and the WT1 gene (predisposing Wilms'
tumor, genital abnormalities and nephropathies). Ani-
ridia is clinically required for the diagnosis [1]. Most
WAGR patients are mentally retarded to some extent, and

obesity has occasionally been noted, however the genetic
causes for these traits have not been elucidated [2-5].
Recently Xu et al hypothesised that the SLC1A2, PRRG4
and BDNF genes might contribute to the abnormal men-
tal development [6].

Potocki-Shaffer syndrome (PSS) is another gene deletion
syndrome caused by a deletion on chromosome 11, but
more proximal (11p11.2) than the WAGR deletion. The
syndrome is characterized by foramina parietalia per-
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manga, multiple exostoses and in some cases craniofacial
dysostosis and mental retardation. Haploinsufficiency for
EXT2 and ALX4 explains exostoses and parietal foramina
respectively [7-9].

We present here a patient with an 8.5 Mb deletion on
chromosome 11 located in the area between the WAGR
and PSS deletions (11p13-p12).

Case presentation
A 15-year-old boy was referred to us for cytogenetic stud-
ies. He was the first child of unrelated parents. Pregnancy
and delivery at term (41 weeks of gestation, birth weight
3220 g and length 50 cm) were normal and uneventful.

The patient is mildly to moderately mentally retarded and
attends special school. His face is dysmorphic with a
depressed nasal bridge, folded ears (especially on the right
side), and a maxillary overbite and bilaterally down slant-
ing eyes with ptosis (figure 1). Further ophthalmologic

examination revealed unilateral cataract, astigmatism and
myopia (right eye).

In the neonatal period cryptorchidism and hypospadias
were noted. Upon surgery the testes were found atrophic
as well. Nine years old he began to have seizures that were
treated medically. After medication a weight gain from the
75 centile to just beneath the 97 centile (weight-for-height
ratio) was noted.

Cytogenetic analyses were performed after obtaining
informed consent. Conventional cytogenetic preparations
were made from PHA-stimulated peripheral blood. At first
a normal male karyotype 46,XY was found, but upon re-
examination using R-banding with a quality correspond-
ing to approximately 550 bands an 11p deletion was
revealed with some uncertainty. Comparative genomic
hybridization (chromosome CGH) showed a 11p13 dele-
tion. Fluorescence in situ hybridization (FISH) analysis
was carried out using BACs and fosmid clones (CHORI
BACPAC resource http://bacpac.chori.org/order.php).
The positions of relevant probes are shown in figure 2.
The clones for FISH analysis were labeled with biotin
using a nick-translation kit following the manufacturer's
protocol (Roche Molecular Biochemicals). The probes
were preannealed with Cot1 DNA in hybridization mix,
denatured for 5 minutes at 75°C, and added to the dena-
tured chromosomal slides. Hybridization was carried out
overnight. Signals were detected using 2–3 rounds of
amplification with FITC (fluoresceinisothiocyanate) con-
jugated avidin and anti-avidin antibodies. The chromo-
somal slides were counterstained with propidium iodide
and DAPI. The chromosomes were viewed using Leica
FISH station Q550CW using the DMRXA microscope
equipped with appropriate filters. A minimum of 20 met-
aphases was analyzed. MLPA analysis was performed
using the P219 kit from mrc-Holland following manufac-
turer's instructions. The positions of relevant MLPA
probes are shown in figure 2.

FISH analysis using probe B2.1 (WT1, 11p14.1 [10])
showed deletion of Wilms' tumor-locus while FISH anal-
ysis using probe FAT5 (aniridia-locus, PAX6 gene,
11p14.1 [10]) showed signals from both chromosomes
11 (figure 3). A further mapping of the deletion with FISH
analysis using BAC and fosmid clones revealed a deletion
of approximately 8.5 Mb. This is the maximum size as it is
measured from the distal point of the probe juxtaposed to
the distal probe deleted (i.e. BAC clone RP10-83G3 juxta-
posed to deleted BAC clone RP1-319D17) to the proximal
point of the probe juxtaposed to the proximal probe
deleted (i.e. fosmid clone G248P8673G5 juxtaposed to
deleted fosmid clone G248P89483C8). Thus the distal
breakpoint mapped between position 31,803,008 (BAC
clone RP10-83G3 not deleted) and position 31,922,410

Patient presenting with depressed nasal bridge, maxillary overbite and bilaterally down slanting eyes with ptosisFigure 1
Patient presenting with depressed nasal bridge, max-
illary overbite and bilaterally down slanting eyes with 
ptosis.
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(BAC clone RP1-319D17 deleted), while the proximal
breakpoint mapped between position 40,199,857 (fos-
mid clone G248P89483C8 deleted) and position
40,289,835 (fosmid clone G248P8673G5 not deleted)
(figure 2).

Conclusion
The patient presented in this work shows mental retarda-
tion, unilateral cataract, bilateral ptosis, genital abnormal-
ities, seizures and a dysmorphic face. It is uncertain
whether the obesity observed is a side effect of the treat-
ment for seizures or if it is part of the syndrome. The dele-
tion breakpoints were mapped using FISH and MLPA
analyses. The distal breakpoint was mapped between the
PAX6 and RCN1 genes, while the proximal breakpoint
was mapped to lie either within or proximal to the
LRRC4C gene (Figure 2). The deletion encompasses a total
of 44 genes or open reading frames, including the WT1
gene, which explains the genital abnormalities observed.
As PAX6 is left intact the cataract observed cannot be
explained by a deletion of this gene. One explanation may
be that regulatory elements of PAX6 is deleted as such ele-
ments have been demonstrated [11]. Regulatory elements,
located 5' to the Pax6 gene important for lens induction
have been identified in mouse [12,13]. These upstream
elements were not involved in the deletion in the patient
described here, and it is purely speculative that others
could exist. Another explanation is that the cataract is due
to other genes involved in the deletion or causes unrelated
to the deletion.

McGaughran et al. reported a case with a cytogenetic visi-
ble 11p deletion (del11(p11.2p14) [14]. This patient
exhibited features of both WAGR as well as PSS; develop-
mental delay but no seizures. Bremond-Gignac et al
described a further case with 11p deletion encompassing
EXT2, ALX4, WT1 and PAX6 genes showing features of
both WAGR and PSS [15]. In addition, the patient showed
obesity. Recently Xu et al. reported 31 WAGR cases and
identified the genes deleted in each case using oligonucle-
otide array-CGH [6]. Three of these cases had seizures.
One patient had an intact PAX6 gene, however, ophthal-
mologic findings of the patient were not described since
the scope of the paper was the mental retardation and
autism observed in WAGR patients. Xu et al hypothesizes
that SLC1A2 and BDNF contributes to the autism and
mental retardation [6]. In the patient presented here the
SLC1A2 gene was deleted however the BDNF gene was
intact.

Seizures have been described in PSS while mental retarda-
tion has been described in both WAGR and PSS. There are
no obvious candidate genes for these symptoms, but our
patient may help to further delineate phenotype-genotype
relations in the area.

Abbreviations
WAGR: Wilms' tumor, Aniridia, Genitourinary abnormal-
ities and mental Retardation; PSS: Potocki-Shaffer Syn-
drome; FISH: Fluorescence In Situ Hybridization; MLPA:
Multiplex Ligation Dependent Probe Amplification;
CGH: Comparative Genomic Hybridization

Ensemble map of chromosome 11 (31,760,000–40,289,835)Figure 2
Ensemble map of chromosome 11 (31,760,000–40,289,835). Above map are shown localization of probes used in FISH 
and MLPA analyses. Probes deleted on the derivative chromosome 11 are shown in bold. (1) MLPA probe, (2) FISH probe.
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a) FISH analysis using probe B2.1 (WT1 gene) showing signal from only one chromosome 11Figure 3
a) FISH analysis using probe B2.1 (WT1 gene) show-
ing signal from only one chromosome 11. b) FISH anal-
ysis using FAT5 probe (PAX6 gene) showing signals from 
both chromosomes 11.
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